如何对Pandas DataFrame进行自定义排序

人工智能遇见磐创 2020-11-06 01:28:09
pandas dataframe 进行 自定义 自定


作者|B. Chen 编译|VK 来源|Towards Data Science

Pandas DataFrame有一个内置方法sort_values(),可以根据给定的变量对值进行排序。该方法本身使用起来相当简单,但是它不适用于自定义排序,例如,

  • t恤尺寸:XS、S、M、L和XL

  • 月份:一月、二月、三月、四月等

  • 星期几:周一、周二、周三、周四、周五、周六和周日。

在本文中,我们将了解如何对Pandas DataFrame进行自定义排序。

请查看我的Github repo以获取源代码:https://github.com/BindiChen/machine-learning/blob/master/data-analysis/017-pandas-custom-sort/pandas-custom-sort.ipynb

问题

假设我们有一个关于服装店的数据集:

df = pd.DataFrame({
'cloth_id': [1001, 1002, 1003, 1004, 1005, 1006],
'size': ['S', 'XL', 'M', 'XS', 'L', 'S'],
})

我们可以看到,每一块布料都有一个尺寸值,数据应该按以下顺序排序:

  • XS代表特大号

  • S代表小号

  • M代表中号

  • L代表大号

  • XL为特大号

但是,当调用sort_values('size')时,将得到以下输出。

输出不是我们想要的,但它在技术上是正确的。实际上,sort_values()是按数字顺序对数值数据排序,对对象数据按字母顺序排序。

以下是两种常见的解决方案:

  1. 为自定义排序创建新列

  2. 使用CategoricalDtype将数据强制转换为具有有序性的类别类型

为自定义排序创建新列

在这个解决方案中,需要一个映射数据帧来表示一个自定义排序,然后根据映射创建一个新的列,最后我们可以按新列对数据进行排序。让我们通过一个例子来看看这是如何工作的。

首先,让我们创建一个映射数据帧来表示自定义排序。

df_mapping = pd.DataFrame({
'size': ['XS', 'S', 'M', 'L', 'XL'],
})
sort_mapping = df_mapping.reset_index().set_index('size')

之后,使用sort_mapping中的映射值创建一个新的列 size_num。

df['size_num'] = df['size'].map(sort_mapping['index'])

最后,按新的列大小对值进行排序。

df.sort_values('size_num')

这当然是我们的工作。但它创建了一个备用列,在处理大型数据集时效率可能会降低。

我们可以使用CategoricalDtype更有效地解决这个问题。

使用CategoricalDtype将数据强制转换为具有有序性的类别类型

CategoricalDtype是具有类别和顺序的分类数据的类型[1]。它对于创建自定义排序非常有用[2]。让我们通过一个例子来看看这是如何工作的。

首先,让我们导入CategoricalDtype。

from pandas.api.types import CategoricalDtype

然后,创建一个自定义类别类型cat_size_order

  • 第一个参数设置为['XS'、'S'、'M'、'L'、'XL']作为尺寸的唯一值。

  • 第二个参数ordered=True,将此变量视为有序。

cat_size_order = CategoricalDtype(
['XS', 'S', 'M', 'L', 'XL'],
ordered=True
)

然后,调用astype(cat_size_order)将大小数据强制转换为自定义类别类型。通过运行df['size'],我们可以看到size列已经被转换为一个类别类型,其顺序为[XS<S<M<L<XL]。

>>> df['size'] = df['size'].astype(cat_size_order)
>>> df['size']
0 S
1 XL
2 M
3 XS
4 L
5 S
Name: size, dtype: category
Categories (5, object): [XS < S < M < L < XL]

最后,我们可以调用相同的方法对值进行排序。

df.sort_values('size')

这样效果更好。让我们来看看原理是什么。

使用cat的codes属性访问

现在size列已经被转换为category类型,我们可以使用.cat访问器以查看分类属性。在幕后,它使用codes属性来表示有序变量的大小。

让我们创建一个新的列代码,这样我们可以并排比较大小和代码值。

df['codes'] = df['size'].cat.codes
df

我们可以看到XS、S、M、L和XL的代码分别为0、1、2、3、4和5。codes是类别实际值。通过运行df.info(),我们可以看到实际上是int8。

>>> df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 6 entries, 0 to 5
Data columns (total 3 columns):
 # Column Non-Null Count Dtype 
--- ------ -------------- ----- 
0 cloth_id 6 non-null int64 
1 size 6 non-null category
2 codes 6 non-null int8 
dtypes: category(1), int64(1), int8(1)
memory usage: 388.0 bytes

按多个变量排序

接下来,让我们把事情变得更复杂一点。这里,我们将按多个变量对数据帧进行排序。

df = pd.DataFrame({
'order_id': [1001, 1002, 1003, 1004, 1005, 1006, 1007],
'customer_id': [10, 12, 12, 12, 10, 10, 10],
'month': ['Feb', 'Jan', 'Jan', 'Feb', 'Feb', 'Jan', 'Feb'],
'day_of_week': ['Mon', 'Wed', 'Sun', 'Tue', 'Sat', 'Mon', 'Thu'],
})

类似地,让我们创建两个自定义类别类型cat_day_of_week和cat_month,并将它们传递给astype()。

cat_day_of_week = CategoricalDtype(
['Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat', 'Sun'],
ordered=True
)
cat_month = CategoricalDtype(
['Jan', 'Feb', 'Mar', 'Apr'],
ordered=True,
)
df['day_of_week'] = df['day_of_week'].astype(cat_day_of_week)
df['month'] = df['month'].astype(cat_month)

要按多个变量排序,我们只需要传递一个列表来代替sort_values()。例如,按monthday_of_week排序。

df.sort_values(['month', 'day_of_week'])

ustomer_idmonthday_of_week排序。

df.sort_values(['customer_id', 'month', 'day_of_week'])

就这样,谢谢你的阅读。

请在我的Github上导出笔记本以获取源代码:https://github.com/BindiChen/machine-learning/blob/master/data-analysis/017-pandas-custom-sort/pandas-custom-sort.ipynb

参考引用

原文链接:https://towardsdatascience.com/how-to-do-a-custom-sort-on-pandas-dataframe-ac18e7ea5320

欢迎关注磐创AI博客站: http://panchuang.net/

sklearn机器学习中文官方文档: http://sklearn123.com/

欢迎关注磐创博客资源汇总站: http://docs.panchuang.net/

版权声明
本文为[人工智能遇见磐创]所创,转载请带上原文链接,感谢
https://my.oschina.net/u/4253699/blog/4697477

  1. 利用Python爬虫获取招聘网站职位信息
  2. Using Python crawler to obtain job information of recruitment website
  3. Several highly rated Python libraries arrow, jsonpath, psutil and tenacity are recommended
  4. Python装饰器
  5. Python实现LDAP认证
  6. Python decorator
  7. Implementing LDAP authentication with Python
  8. Vscode configures Python development environment!
  9. In Python, how dare you say you can't log module? ️
  10. 我收藏的有关Python的电子书和资料
  11. python 中 lambda的一些tips
  12. python中字典的一些tips
  13. python 用生成器生成斐波那契数列
  14. python脚本转pyc踩了个坑。。。
  15. My collection of e-books and materials about Python
  16. Some tips of lambda in Python
  17. Some tips of dictionary in Python
  18. Using Python generator to generate Fibonacci sequence
  19. The conversion of Python script to PyC stepped on a pit...
  20. Python游戏开发,pygame模块,Python实现扫雷小游戏
  21. Python game development, pyGame module, python implementation of minesweeping games
  22. Python实用工具,email模块,Python实现邮件远程控制自己电脑
  23. Python utility, email module, python realizes mail remote control of its own computer
  24. 毫无头绪的自学Python,你可能连门槛都摸不到!【最佳学习路线】
  25. Python读取二进制文件代码方法解析
  26. Python字典的实现原理
  27. Without a clue, you may not even touch the threshold【 Best learning route]
  28. Parsing method of Python reading binary file code
  29. Implementation principle of Python dictionary
  30. You must know the function of pandas to parse JSON data - JSON_ normalize()
  31. Python实用案例,私人定制,Python自动化生成爱豆专属2021日历
  32. Python practical case, private customization, python automatic generation of Adu exclusive 2021 calendar
  33. 《Python实例》震惊了,用Python这么简单实现了聊天系统的脏话,广告检测
  34. "Python instance" was shocked and realized the dirty words and advertisement detection of the chat system in Python
  35. Convolutional neural network processing sequence for Python deep learning
  36. Python data structure and algorithm (1) -- enum type enum
  37. 超全大厂算法岗百问百答(推荐系统/机器学习/深度学习/C++/Spark/python)
  38. 【Python进阶】你真的明白NumPy中的ndarray吗?
  39. All questions and answers for algorithm posts of super large factories (recommended system / machine learning / deep learning / C + + / spark / Python)
  40. [advanced Python] do you really understand ndarray in numpy?
  41. 【Python进阶】Python进阶专栏栏主自述:不忘初心,砥砺前行
  42. [advanced Python] Python advanced column main readme: never forget the original intention and forge ahead
  43. python垃圾回收和缓存管理
  44. java调用Python程序
  45. java调用Python程序
  46. Python常用函数有哪些?Python基础入门课程
  47. Python garbage collection and cache management
  48. Java calling Python program
  49. Java calling Python program
  50. What functions are commonly used in Python? Introduction to Python Basics
  51. Python basic knowledge
  52. Anaconda5.2 安装 Python 库(MySQLdb)的方法
  53. Python实现对脑电数据情绪分析
  54. Anaconda 5.2 method of installing Python Library (mysqldb)
  55. Python implements emotion analysis of EEG data
  56. Master some advanced usage of Python in 30 seconds, which makes others envy it
  57. python爬取百度图片并对图片做一系列处理
  58. Python crawls Baidu pictures and does a series of processing on them
  59. python链接mysql数据库
  60. Python link MySQL database