Python filtering sensitive word records

python filtering sensitive word records


sketch :

On sensitive word filtering can be seen as a text anti spam algorithm , for example
subject : Sensitive word text file filtered_words.txt, When the user enters sensitive words , Then use asterisk * Replace , For example, when the user enters 「 Beijing is a good city 」, Has become a 「** It's a good city 」
Code :

#coding=utf-8
def filterwords(x):
with open(x,'r') as f:
text=f.read()
print text.split('\n')
userinput=raw_input('myinput:')
for i in text.split('\n'):
if i in userinput:
replace_str='*'*len(i.decode('utf-8'))
word=userinput.replace(i,replace_str)
return word
print filterwords('filtered_words.txt')

Another example is the anti yellow series :

 Develop sensitive word filters , Prompt users to enter comments , If the user's input contains special characters :
List of sensitive words li = [" Aoi Sora "," Tokyo fever ",” Wutenglan ”,” Yui Hatano ”]
Replace the sensitive words in the user's input with ***, And add it to a list ; If the user's input doesn't have sensitive words , Add it directly to the list above .
content = input(' Please enter your content :')
li = [" Aoi Sora "," Tokyo fever "," Wutenglan "," Yui Hatano "]
i = 0
while i < 4:
for li[i] in content:
li1 = content.replace(' Aoi Sora ','***')
li2 = li1.replace(' Tokyo fever ','***')
li3 = li2.replace(' Wutenglan ','***')
li4 = li3.replace(' Yui Hatano ','***')
else:
pass
i += 1

 Insert picture description here
Practical cases :
Together bat Interview questions : Quick replacement 10 One hundred million titles 5 Ten thousand sensitive words , What are the solutions ?
There are a billion titles , In a file , One title per line . Yes 5 Ten thousand sensitive words , There is another file . Write a program to filter out all sensitive words in all headings , Save to another file .

1、DFA Filter sensitive words algorithm

In the algorithm of text filtering ,DFA Is a better algorithm .DFA namely Deterministic Finite Automaton, That is to say, definite finite automata .
The core of the algorithm is to establish many sensitive word trees based on sensitive words .
python Realization DFA Algorithm :

# -*- coding:utf-8 -*-
import time
time1=time.time()
# DFA Algorithm
class DFAFilter():
def __init__(self):
self.keyword_chains = {}
self.delimit = '\x00'
def add(self, keyword):
keyword = keyword.lower()
chars = keyword.strip()
if not chars:
return
level = self.keyword_chains
for i in range(len(chars)):
if chars[i] in level:
level = level[chars[i]]
else:
if not isinstance(level, dict):
break
for j in range(i, len(chars)):
level[chars[j]] = {}
last_level, last_char = level, chars[j]
level = level[chars[j]]
last_level[last_char] = {self.delimit: 0}
break
if i == len(chars) - 1:
level[self.delimit] = 0
def parse(self, path):
with open(path,encoding='utf-8') as f:
for keyword in f:
self.add(str(keyword).strip())
def filter(self, message, repl="*"):
message = message.lower()
ret = []
start = 0
while start < len(message):
level = self.keyword_chains
step_ins = 0
for char in message[start:]:
if char in level:
step_ins += 1
if self.delimit not in level[char]:
level = level[char]
else:
ret.append(repl * step_ins)
start += step_ins - 1
break
else:
ret.append(message[start])
break
else:
ret.append(message[start])
start += 1
return ''.join(ret)
if __name__ == "__main__":
gfw = DFAFilter()
path="F:/ Text anti spam algorithm /sensitive_words.txt"
gfw.parse(path)
text=" Xinjiang riot apple new product launch "
result = gfw.filter(text)
print(text)
print(result)
time2 = time.time()
print(' The total time is :' + str(time2 - time1) + 's')

Running effect :

 Xinjiang riot apple new product launch
**** Apple launch **
The total time is :0.0010344982147216797s

2、AC Automata filter sensitive words algorithm

AC automata : A common example is to give n Word , Give me another paragraph that contains m One character article , Let you find out how many words appear in the article .
Simply speak ,AC Automata is a dictionary tree +kmp Algorithm + Mismatch pointer

# -*- coding:utf-8 -*-
import time
time1=time.time()
# AC Automata algorithm
class node(object):
def __init__(self):
self.next = {}
self.fail = None
self.isWord = False
self.word = ""
class ac_automation(object):
def __init__(self):
self.root = node()
# Add sensitive word function
def addword(self, word):
temp_root = self.root
for char in word:
if char not in temp_root.next:
temp_root.next[char] = node()
temp_root = temp_root.next[char]
temp_root.isWord = True
temp_root.word = word
# Failed pointer function
def make_fail(self):
temp_que = []
temp_que.append(self.root)
while len(temp_que) != 0:
temp = temp_que.pop(0)
p = None
for key,value in temp.next.item():
if temp == self.root:
temp.next[key].fail = self.root
else:
p = temp.fail
while p is not None:
if key in p.next:
temp.next[key].fail = p.fail
break
p = p.fail
if p is None:
temp.next[key].fail = self.root
temp_que.append(temp.next[key])
# Find sensitive word functions
def search(self, content):
p = self.root
result = []
currentposition = 0
while currentposition < len(content):
word = content[currentposition]
while word in p.next == False and p != self.root:
p = p.fail
if word in p.next:
p = p.next[word]
else:
p = self.root
if p.isWord:
result.append(p.word)
p = self.root
currentposition += 1
return result
# Load sensitive lexicon functions
def parse(self, path):
with open(path,encoding='utf-8') as f:
for keyword in f:
self.addword(str(keyword).strip())
# The substitution function of sensitive words
def words_replace(self, text):
"""
:param ah: AC automata
:param text: Text
:return: Filter the text after sensitive words
"""
result = list(set(self.search(text)))
for x in result:
m = text.replace(x, '*' * len(x))
text = m
return text
if __name__ == '__main__':
ah = ac_automation()
path='F:/ Text anti spam algorithm /sensitive_words.txt'
ah.parse(path)
text1=" Xinjiang riot apple new product launch "
text2=ah.words_replace(text1)
print(text1)
print(text2)
time2 = time.time()
print(' The total time is :' + str(time2 - time1) + 's')

Running results :

 Xinjiang riot apple new product launch
**** Apple launch **
The total time is :0.0010304450988769531s
 WeChat ID
版权声明
本文为[Elementary school students in IT field]所创,转载请带上原文链接,感谢

  1. 利用Python爬虫获取招聘网站职位信息
  2. Using Python crawler to obtain job information of recruitment website
  3. Several highly rated Python libraries arrow, jsonpath, psutil and tenacity are recommended
  4. Python装饰器
  5. Python实现LDAP认证
  6. Python decorator
  7. Implementing LDAP authentication with Python
  8. Vscode configures Python development environment!
  9. In Python, how dare you say you can't log module? ️
  10. 我收藏的有关Python的电子书和资料
  11. python 中 lambda的一些tips
  12. python中字典的一些tips
  13. python 用生成器生成斐波那契数列
  14. python脚本转pyc踩了个坑。。。
  15. My collection of e-books and materials about Python
  16. Some tips of lambda in Python
  17. Some tips of dictionary in Python
  18. Using Python generator to generate Fibonacci sequence
  19. The conversion of Python script to PyC stepped on a pit...
  20. Python游戏开发,pygame模块,Python实现扫雷小游戏
  21. Python game development, pyGame module, python implementation of minesweeping games
  22. Python实用工具,email模块,Python实现邮件远程控制自己电脑
  23. Python utility, email module, python realizes mail remote control of its own computer
  24. 毫无头绪的自学Python,你可能连门槛都摸不到!【最佳学习路线】
  25. Python读取二进制文件代码方法解析
  26. Python字典的实现原理
  27. Without a clue, you may not even touch the threshold【 Best learning route]
  28. Parsing method of Python reading binary file code
  29. Implementation principle of Python dictionary
  30. You must know the function of pandas to parse JSON data - JSON_ normalize()
  31. Python实用案例,私人定制,Python自动化生成爱豆专属2021日历
  32. Python practical case, private customization, python automatic generation of Adu exclusive 2021 calendar
  33. 《Python实例》震惊了,用Python这么简单实现了聊天系统的脏话,广告检测
  34. "Python instance" was shocked and realized the dirty words and advertisement detection of the chat system in Python
  35. Convolutional neural network processing sequence for Python deep learning
  36. Python data structure and algorithm (1) -- enum type enum
  37. 超全大厂算法岗百问百答(推荐系统/机器学习/深度学习/C++/Spark/python)
  38. 【Python进阶】你真的明白NumPy中的ndarray吗?
  39. All questions and answers for algorithm posts of super large factories (recommended system / machine learning / deep learning / C + + / spark / Python)
  40. [advanced Python] do you really understand ndarray in numpy?
  41. 【Python进阶】Python进阶专栏栏主自述:不忘初心,砥砺前行
  42. [advanced Python] Python advanced column main readme: never forget the original intention and forge ahead
  43. python垃圾回收和缓存管理
  44. java调用Python程序
  45. java调用Python程序
  46. Python常用函数有哪些?Python基础入门课程
  47. Python garbage collection and cache management
  48. Java calling Python program
  49. Java calling Python program
  50. What functions are commonly used in Python? Introduction to Python Basics
  51. Python basic knowledge
  52. Anaconda5.2 安装 Python 库(MySQLdb)的方法
  53. Python实现对脑电数据情绪分析
  54. Anaconda 5.2 method of installing Python Library (mysqldb)
  55. Python implements emotion analysis of EEG data
  56. Master some advanced usage of Python in 30 seconds, which makes others envy it
  57. python爬取百度图片并对图片做一系列处理
  58. Python crawls Baidu pictures and does a series of processing on them
  59. python链接mysql数据库
  60. Python link MySQL database