Python WordCloud 文本分析 生成词云图

锦天 2020-11-12 23:19:36
Python 分析 文本 wordcloud 本分


环境准备

  • Python, pip安装配置;

  • 安装依赖的包(使用-i url指定要使用的镜像源,加快下载速度)

pip install wordcloud scipy jieba

如果下载速度太慢,加参数-i https://pypi.tuna.tsinghua.edu.cn/simple使用国内镜像下载即可。

  • 文件准备:
    1. 要分析的文本文件(当然也可以在代码中直接写字符串)。
    2. 中文字体文件(必须设置,否则中文词云图会显示小方块样式的乱码)
      可以在Windows系统中搜索.ttf结尾的,便是字体文件,我选的是simfang.ttf
    3. 背景文件
      默认会生成矩形图片(文字为彩色),如果想生成指定样式的词云(包括重设颜色),可以通过mask设置背景。
      我下载了:https://tse2-mm.cn.bing.net/th/id/OIP.D_Gm8IGCvkqmOgtU2hueVwHaHS?pid=Api&rs=1
      github logo

Code

注意相对路径和绝对路径。

如果使用的相对路径加载文件,执行该py脚本的时候,应该先cd到该脚本所在目录,然后:

python test-wordcloud.py

test-wordcloud.py

from wordcloud import WordCloud, ImageColorGenerator, STOPWORDS
import matplotlib.pyplot as plt
import scipy.misc as imread
import jieba
# 要分析的文本文件的路径
text_file_paths = "余华-活着.txt"
# 自定义词云背景图片的路径(可不设置)
mask_file_path = "bg.jpg"
# 中文字体路径
font_path = "C:\Windows\WinSxS\amd64_microsoft-windows-font-truetype-simfang_31bf3856ad364e35_10.0.18362.1_none_5a7f93f39ed619f0\simfang.ttf"
# 要生成的结果路径
result_file_path = "result.jpg"
mask_img = plt.imread(mask_file_path)
with open(text_file_paths, "r", encoding="UTF-8") as f:
text = f.read()
wordlist_after_jieba = jieba.cut(text, cut_all=True)
wl_space_split = " ".join(wordlist_after_jieba)
wc = WordCloud(
background_color="white",
font_path=font_path,
# mask=mask_img, # 是否自己指定的背景图片
prefer_horizontal=0.9, # 词语水平展示的比例
width=500,
height=300,
scale=10,
max_words=500,
relative_scaling=0.5,
stopwords=STOPWORDS,
max_font_size=70,
collocations=False,
min_word_length=2,
)
wc.generate(wl_space_split)
# 自定义图片背景形状、颜色
# image_colors = ImageColorGenerator(mask_img)
# wc.recolor(color_func=image_colors)
# 写入到图片文件中
wc.to_file(result_file_path)
# 显示图片
plt.imshow(wc)
plt.axis("off")
plt.show()

结果文件

  1. 不配置中文字体文件,出现小方块乱码:
    在这里插入图片描述

  2. 配置中文字体后:

在这里插入图片描述

  1. 自己指定背景图片后(该图片的宽高会覆盖我们的给词云的width height配置):
    在这里插入图片描述

  2. 自己指定图片的颜色方案:
    在这里插入图片描述

Links

版权声明
本文为[锦天]所创,转载请带上原文链接,感谢
https://wuyujin.blog.csdn.net/article/details/108679102

  1. 利用Python爬虫获取招聘网站职位信息
  2. Using Python crawler to obtain job information of recruitment website
  3. Several highly rated Python libraries arrow, jsonpath, psutil and tenacity are recommended
  4. Python装饰器
  5. Python实现LDAP认证
  6. Python decorator
  7. Implementing LDAP authentication with Python
  8. Vscode configures Python development environment!
  9. In Python, how dare you say you can't log module? ️
  10. 我收藏的有关Python的电子书和资料
  11. python 中 lambda的一些tips
  12. python中字典的一些tips
  13. python 用生成器生成斐波那契数列
  14. python脚本转pyc踩了个坑。。。
  15. My collection of e-books and materials about Python
  16. Some tips of lambda in Python
  17. Some tips of dictionary in Python
  18. Using Python generator to generate Fibonacci sequence
  19. The conversion of Python script to PyC stepped on a pit...
  20. Python游戏开发,pygame模块,Python实现扫雷小游戏
  21. Python game development, pyGame module, python implementation of minesweeping games
  22. Python实用工具,email模块,Python实现邮件远程控制自己电脑
  23. Python utility, email module, python realizes mail remote control of its own computer
  24. 毫无头绪的自学Python,你可能连门槛都摸不到!【最佳学习路线】
  25. Python读取二进制文件代码方法解析
  26. Python字典的实现原理
  27. Without a clue, you may not even touch the threshold【 Best learning route]
  28. Parsing method of Python reading binary file code
  29. Implementation principle of Python dictionary
  30. You must know the function of pandas to parse JSON data - JSON_ normalize()
  31. Python实用案例,私人定制,Python自动化生成爱豆专属2021日历
  32. Python practical case, private customization, python automatic generation of Adu exclusive 2021 calendar
  33. 《Python实例》震惊了,用Python这么简单实现了聊天系统的脏话,广告检测
  34. "Python instance" was shocked and realized the dirty words and advertisement detection of the chat system in Python
  35. Convolutional neural network processing sequence for Python deep learning
  36. Python data structure and algorithm (1) -- enum type enum
  37. 超全大厂算法岗百问百答(推荐系统/机器学习/深度学习/C++/Spark/python)
  38. 【Python进阶】你真的明白NumPy中的ndarray吗?
  39. All questions and answers for algorithm posts of super large factories (recommended system / machine learning / deep learning / C + + / spark / Python)
  40. [advanced Python] do you really understand ndarray in numpy?
  41. 【Python进阶】Python进阶专栏栏主自述:不忘初心,砥砺前行
  42. [advanced Python] Python advanced column main readme: never forget the original intention and forge ahead
  43. python垃圾回收和缓存管理
  44. java调用Python程序
  45. java调用Python程序
  46. Python常用函数有哪些?Python基础入门课程
  47. Python garbage collection and cache management
  48. Java calling Python program
  49. Java calling Python program
  50. What functions are commonly used in Python? Introduction to Python Basics
  51. Python basic knowledge
  52. Anaconda5.2 安装 Python 库(MySQLdb)的方法
  53. Python实现对脑电数据情绪分析
  54. Anaconda 5.2 method of installing Python Library (mysqldb)
  55. Python implements emotion analysis of EEG data
  56. Master some advanced usage of Python in 30 seconds, which makes others envy it
  57. python爬取百度图片并对图片做一系列处理
  58. Python crawls Baidu pictures and does a series of processing on them
  59. python链接mysql数据库
  60. Python link MySQL database