【Python】Python之PyLab的绘制折线图(手把手教程)

Yngz_Miao 2020-11-13 07:54:58
Python 绘制 pylab 折线图


Python的可视化工具有很多,数不胜数,各有优劣。本文就对其中的pylab进行介绍。之所以介绍这一款,是因为它和Matlab的强烈相似度,如果你使用过Matlab,那么相信pylab你也会很快上手。


简单的plot函数

pylab绘图,最基本的函数就是plot函数,当然如果想要将图片显示出来,需要额外添加一个show函数。

python的绘图中,numpy是一个非常常用的工具,不太熟悉的可以参考博主的另一篇博文:【Python】Python之Numpy的超实用基础详细教程

例如:

import pylab
import numpy as np
if __name__ == "__main__":
x = np.arange(0, 1, 0.05)
y = [i*i for i in np.arange(0, 1, 0.05)]
pylab.plot(x, y)
pylab.show()

运行生成的图片为:

规定两个序列,只需要两个序列的长度相等,就可以以其中一个序列为横坐标,零一个序列为纵坐标,进行绘制

但是也看得出来,这样的图片是比较寒碜的,简单朴素。我们可以对线条进行一些修饰,比如线型、颜色、点型等等。只需要在plot函数中添加一个参数即可。这个参数用法比较灵活,特可以从下表的值中进行组合选择:

颜色 线型 点型
‘b’ (蓝色) ‘-’ (实线) ‘,’ (像素)
‘g’ (绿色) ‘–’ (虚线) ‘o’ (圆形)
‘r’ (红色) ‘-.’ (虚点线) ‘^’ (上三角)
‘y’ (黄色) ‘:’ (点线) ‘s’ (方形)
‘k’ (黑色) ‘.’ (点) ‘+’ (加号)
‘w’ (蓝色) ‘x’ (叉形)

例如:

import pylab
import numpy as np
if __name__ == "__main__":
x = np.arange(0, 1, 0.05)
y = [i*i for i in np.arange(0, 1, 0.05)]
pylab.plot(x, y, "b-.+")
pylab.show()

运行生成的图片为:

如果,还想增加图例,x轴、y轴的含义和刻度,标题的信息,也可以通过添加一些函数来进行。

例如:

# -*- coding:UTF-8 -*-
import pylab
import numpy as np
if __name__ == "__main__":
x = np.arange(0, 1, 0.05)
y = [i*i for i in np.arange(0, 1, 0.05)]
pylab.plot(x, y, "b-.+", label='line')
pylab.xlabel('x') # x、y轴的介绍
pylab.ylabel('y')
pylab.xlim([0, 1]) # x、y轴的长度区间
pylab.ylim([0, 1])
pylab.xticks(np.arange(0, 1, 0.05), fontsize=8) # x、y轴的刻度
pylab.yticks(np.arange(0, 1, 0.05), fontsize=8)
pylab.title('x-y') # x、y的标题
pylab.legend(loc=3, borderaxespad=0., bbox_to_anchor=(0, 0)) # 图例的位置
pylab.show()

运行生成的图片为:

是不是瞬间就感觉丰富了许多!


多折线绘制

当然,在很多时刻需要绘制多条折线。很明显,可以选择将多条直线绘制到同一张图片上,也可以选择在图片上绘制不同的子图。

多折线同图

将多条折线绘制到同一张图片上,这非常简单,直接再plot一条直线就可以了。

例如:

# -*- coding:UTF-8 -*-
import pylab
import numpy as np
if __name__ == "__main__":
x = np.arange(0, 1, 0.05)
y1 = [i*i for i in np.arange(0, 1, 0.05)]
y2 = [i+i for i in np.arange(0, 1, 0.05)]
pylab.plot(x, y1, "b-.+", label='line1')
pylab.plot(x, y2, "r-.+", label='line2')
pylab.xlabel('x')
pylab.ylabel('y')
pylab.xlim([0, 1])
pylab.ylim([0, 1])
pylab.xticks(np.arange(0, 1, 0.05), fontsize=8)
pylab.yticks(np.arange(0, 1, 0.05), fontsize=8)
pylab.title('x-y')
pylab.legend(loc=3, borderaxespad=0., bbox_to_anchor=(0, 0))
pylab.show()

运行生成的图片为:

多折线不同图

将多条折线绘制到图片上的不同子图上,这就需要通过subplot进行区域分割和指定。

subplot(numRows, numCols, plotNum)

该函数会将这个图片分为numRows行、nulCols列,然后按照从左到右、从上到下的顺序进行编号,最左上的编号为1。plotNum参数指定子图的所在区域

例如:

# -*- coding:UTF-8 -*-
import pylab
import numpy as np
if __name__ == "__main__":
x = np.arange(0, 1, 0.05)
y1 = [i*i for i in np.arange(0, 1, 0.05)]
y2 = [i+i for i in np.arange(0, 1, 0.05)]
pylab.subplot(1, 2, 1)
pylab.plot(x, y1, "b-.+", label='line1')
pylab.xlabel('x')
pylab.ylabel('y1')
pylab.xlim([0, 1])
pylab.ylim([0, 1])
pylab.xticks(np.arange(0, 1, 0.05), fontsize=8)
pylab.yticks(np.arange(0, 1, 0.05), fontsize=8)
pylab.title('x-y1')
pylab.legend(loc=3, borderaxespad=0., bbox_to_anchor=(0, 0))
pylab.subplot(1, 2, 2)
pylab.plot(x, y2, "r-.+", label='line2')
pylab.xlabel('x')
pylab.ylabel('y2')
pylab.xlim([0, 1])
pylab.ylim([0, 1])
pylab.xticks(np.arange(0, 1, 0.05), fontsize=8)
pylab.yticks(np.arange(0, 1, 0.05), fontsize=8)
pylab.title('x-y2')
pylab.legend(loc=3, borderaxespad=0., bbox_to_anchor=(0, 0))
pylab.show()

运行生成的图片为:

这是比较规整的例子,如果是不规整的呢?例如,第一行两张图,第二行一张图。这就要稍微变通一下了。

第一行其实是按照2*2分法的第一个和第二个,第二行其实是按照2*1分法的第二行。这样思考就会迎刃而解了。

# -*- coding:UTF-8 -*-
import pylab
import numpy as np
if __name__ == "__main__":
x = np.arange(0, 1, 0.05)
y1 = [i*i for i in np.arange(0, 1, 0.05)]
y2 = [i+i for i in np.arange(0, 1, 0.05)]
pylab.subplot(2, 2, 1)
pylab.plot(x, y1, "b-.+", label='line1')
pylab.xlabel('x')
pylab.ylabel('y1')
pylab.xlim([0, 1])
pylab.ylim([0, 1])
pylab.xticks(np.arange(0, 1, 0.05), fontsize=8)
pylab.yticks(np.arange(0, 1, 0.05), fontsize=8)
pylab.title('x-y1')
pylab.legend(loc=3, borderaxespad=0., bbox_to_anchor=(0, 0))
pylab.subplot(2, 2, 2)
pylab.plot(x, y2, "r-.+", label='line2')
pylab.xlabel('x')
pylab.ylabel('y2')
pylab.xlim([0, 1])
pylab.ylim([0, 1])
pylab.xticks(np.arange(0, 1, 0.05), fontsize=8)
pylab.yticks(np.arange(0, 1, 0.05), fontsize=8)
pylab.title('x-y2')
pylab.legend(loc=3, borderaxespad=0., bbox_to_anchor=(0, 0))
pylab.subplot(2, 1, 2)
pylab.plot(x, y1, "b-.+", label='line1')
pylab.plot(x, y2, "r-.+", label='line2')
pylab.xlabel('x')
pylab.ylabel('y')
pylab.xlim([0, 1])
pylab.ylim([0, 1])
pylab.xticks(np.arange(0, 1, 0.05), fontsize=8)
pylab.yticks(np.arange(0, 1, 0.05), fontsize=8)
pylab.title('x-y')
pylab.legend(loc=3, borderaxespad=0., bbox_to_anchor=(0, 0))
pylab.show()

运行生成的图片为:


其他函数

除了上述函数之外,还有一些其他的常用函数。

pylab.grid() # 网格绘制
pylab.savefig(图片存储路径, dpi=200) # 保存为图片

掌握了这些基本的折现图的绘制函数,相信一般的折线图都可以轻松掌握。


相关阅读

matplotlib 使用

版权声明
本文为[Yngz_Miao]所创,转载请带上原文链接,感谢
https://yngzmiao.blog.csdn.net/article/details/102624579

  1. 利用Python爬虫获取招聘网站职位信息
  2. Using Python crawler to obtain job information of recruitment website
  3. Several highly rated Python libraries arrow, jsonpath, psutil and tenacity are recommended
  4. Python装饰器
  5. Python实现LDAP认证
  6. Python decorator
  7. Implementing LDAP authentication with Python
  8. Vscode configures Python development environment!
  9. In Python, how dare you say you can't log module? ️
  10. 我收藏的有关Python的电子书和资料
  11. python 中 lambda的一些tips
  12. python中字典的一些tips
  13. python 用生成器生成斐波那契数列
  14. python脚本转pyc踩了个坑。。。
  15. My collection of e-books and materials about Python
  16. Some tips of lambda in Python
  17. Some tips of dictionary in Python
  18. Using Python generator to generate Fibonacci sequence
  19. The conversion of Python script to PyC stepped on a pit...
  20. Python游戏开发,pygame模块,Python实现扫雷小游戏
  21. Python game development, pyGame module, python implementation of minesweeping games
  22. Python实用工具,email模块,Python实现邮件远程控制自己电脑
  23. Python utility, email module, python realizes mail remote control of its own computer
  24. 毫无头绪的自学Python,你可能连门槛都摸不到!【最佳学习路线】
  25. Python读取二进制文件代码方法解析
  26. Python字典的实现原理
  27. Without a clue, you may not even touch the threshold【 Best learning route]
  28. Parsing method of Python reading binary file code
  29. Implementation principle of Python dictionary
  30. You must know the function of pandas to parse JSON data - JSON_ normalize()
  31. Python实用案例,私人定制,Python自动化生成爱豆专属2021日历
  32. Python practical case, private customization, python automatic generation of Adu exclusive 2021 calendar
  33. 《Python实例》震惊了,用Python这么简单实现了聊天系统的脏话,广告检测
  34. "Python instance" was shocked and realized the dirty words and advertisement detection of the chat system in Python
  35. Convolutional neural network processing sequence for Python deep learning
  36. Python data structure and algorithm (1) -- enum type enum
  37. 超全大厂算法岗百问百答(推荐系统/机器学习/深度学习/C++/Spark/python)
  38. 【Python进阶】你真的明白NumPy中的ndarray吗?
  39. All questions and answers for algorithm posts of super large factories (recommended system / machine learning / deep learning / C + + / spark / Python)
  40. [advanced Python] do you really understand ndarray in numpy?
  41. 【Python进阶】Python进阶专栏栏主自述:不忘初心,砥砺前行
  42. [advanced Python] Python advanced column main readme: never forget the original intention and forge ahead
  43. python垃圾回收和缓存管理
  44. java调用Python程序
  45. java调用Python程序
  46. Python常用函数有哪些?Python基础入门课程
  47. Python garbage collection and cache management
  48. Java calling Python program
  49. Java calling Python program
  50. What functions are commonly used in Python? Introduction to Python Basics
  51. Python basic knowledge
  52. Anaconda5.2 安装 Python 库(MySQLdb)的方法
  53. Python实现对脑电数据情绪分析
  54. Anaconda 5.2 method of installing Python Library (mysqldb)
  55. Python implements emotion analysis of EEG data
  56. Master some advanced usage of Python in 30 seconds, which makes others envy it
  57. python爬取百度图片并对图片做一系列处理
  58. Python crawls Baidu pictures and does a series of processing on them
  59. python链接mysql数据库
  60. Python link MySQL database