python PIL Image 图像处理基本操作

-牧野- 2020-11-13 08:02:24
Python image PIL 处理 图像


1. 图片加载、灰度图、 显示和保存

# Created by 牧野 CSDN
from PIL import Image
img = Image.open('01.jpg')
imgGrey = img.convert('L')
img.show()
imgGrey.show()
img.save('img_copy.jpg')
imgGrey.save('img_gray.jpg')

 

2. 图片宽、高、通道模式、平均值获取

# # Created by 牧野 CSDN
from PIL import Image
import numpy as np
img = Image.open('01.jpg')
width, height = img.size
channel_mode = img.mode
mean_value = np.mean(img)
print(width)
print(height)
print(channel_mode)
print(mean_value)

 

3. 创建指定大小,指定通道类型的空图像

# Created by 牧野 CSDN
from PIL import Image
width = 200
height = 100
img_white = Image.new('RGB', (width,height), (255,255,255))
img_black = Image.new('RGB', (width,height), (0,0,0))
img_L = Image.new('L', (width, height), (255))
img_white.show()
img_black.show()
img_L.show()

 

4. 访问和操作图像像素

# Created by 牧野 CSDN
from PIL import Image
img = Image.open('01.jpg')
width, height = img.size
# 获取指定坐标位置像素值
pixel_value = img.getpixel((width/2, height/2))
print(pixel_value)
# 或者使用load方法
pim = img.load()
pixel_value1 = pim[width/2, height/2]
print(pixel_value1)
# 设置指定坐标位置像素的值
pim[width/2, height/2] = (0, 0, 0)
# 或使用putpixel方法
img.putpixel((w//2, h//2), (255,255,255))
# 设置指定区域像素的值
for w in range(int(width/2) - 40, int(width/2) + 40):
for h in range(int(height/2) - 20, int(height/2) + 20):
pim[w, h] = (255, 0, 0)
# img.putpixel((w, h), (255,255,255))
img.show()

 

5. 图像通道分离和合并

# Created by 牧野 CSDN
from PIL import Image
img = Image.open('01.jpg')
# 通道分离
R, G, B = img.split()
R.show)
G.show()
B.show()
# 通道合并
img_RGB = Image.merge('RGB', (R, G, B))
img_BGR = Image.merge('RGB', (B, G, R))
img_RGB.show()
img_BGR.show()

 

6. 在图像上输出文字

# Created by 牧野 CSDN
from PIL import Image, ImageDraw, ImageFont
img = Image.open('01.jpg')
# 创建Draw对象:
draw = ImageDraw.Draw(img)
# 字体颜色
fillColor = (255, 0, 0)
text = 'print text on PIL Image'
position = (200,100)
draw.text(position, text, fill=fillColor)
img.show()

 

7. 图像缩放

# Created by 牧野 CSDN
from PIL import Image
img = Image.open('01.jpg')
width, height = img.size
img_NEARESET = img.resize((width//2, height//2)) # 缩放默认模式是NEARESET(最近邻插值)
img_BILINEAR = img.resize((width//2, height//2), Image.BILINEAR) # BILINEAR 2x2区域的双线性插值
img_BICUBIC = img.resize((width//2, height//2), Image.BICUBIC) # BICUBIC 4x4区域的双三次插值
img_ANTIALIAS = img.resize((width//2, height//2), Image.ANTIALIAS) # ANTIALIAS 高质量下采样滤波

 

8. 图像遍历操作

# Created by 牧野 CSDN
from PIL import Image
img = Image.open('01.jpg').convert('L')
width, height = img.size
pim = img.load()
for w in range(width):
for h in range(height):
if pim[w, h] > 100:
img.putpixel((w, h), 255)
# pim[w, h] = 255
else:
img.putpixel((w, h), 0)
# pim[w, h] = 0
img.show()

 

9. 图像阈值分割、 二值化

# Created by 牧野 CSDN
from PIL import Image
img = Image.open('01.jpg').convert('L')
width, height = img.size
threshold = 125
for w in range(width):
for h in range(height):
if img.getpixel((w, h)) > threshold:
img.putpixel((w, h), 255)
else:
img.putpixel((w, h), 0)
img.save('binary.jpg')

 

10. 图像裁剪

# Created by 牧野 CSDN
from PIL import Image
img = Image.open('01.jpg')
width, height = img.size
# 前两个坐标点是左上角坐标
# 后两个坐标点是右下角坐标
# width在前, height在后
box = (100, 100, 550, 350)
region = img.crop(box)
region.save('crop.jpg')

 

11. 图像边界扩展

# Created by 牧野 CSDN
# 边界扩展
from PIL import Image
img = Image.open('test.png')
width, height = img.size
channel_mode = img.mode
img_makeBorder_full = Image.new(channel_mode, (2*width, height))
img_makeBorder_part = Image.new(channel_mode, (width+200, height))
# 图像水平扩展整个图像
img_makeBorder_full.paste(img, (0, 0, width, height))
img_makeBorder_full.paste(img, (width, 0, 2*width, height))
# 前两个坐标点是左上角坐标
# 后两个坐标点是右下角坐标
# width在前, height在后
box = (width-200, 0, width, height)
region = img.crop(box)
# 图像水平右侧扩展一个ROI
img_makeBorder_part.paste(img, (0, 0, width, height))
img_makeBorder_part.paste(region, (width, 0, width+200, height))
img_makeBorder_part.show()
img_makeBorder_full.show()

 

12. PIL.Image 和 numpy 格式相互转换

# Created by 牧野 CSDN
from PIL import Image
import numpy as np
img = Image.open('01.jpg')
array = np.array(img) # PIL.Image 转 numpy
img1 = Image.fromarray(array) # numpy转 PIL.Image
img1 = Image.fromarray(array.astype('uint8'))
img1.save('from_array.jpg')

 

版权声明
本文为[-牧野-]所创,转载请带上原文链接,感谢
https://blog.csdn.net/dcrmg/article/details/102963336

  1. 利用Python爬虫获取招聘网站职位信息
  2. Using Python crawler to obtain job information of recruitment website
  3. Several highly rated Python libraries arrow, jsonpath, psutil and tenacity are recommended
  4. Python装饰器
  5. Python实现LDAP认证
  6. Python decorator
  7. Implementing LDAP authentication with Python
  8. Vscode configures Python development environment!
  9. In Python, how dare you say you can't log module? ️
  10. 我收藏的有关Python的电子书和资料
  11. python 中 lambda的一些tips
  12. python中字典的一些tips
  13. python 用生成器生成斐波那契数列
  14. python脚本转pyc踩了个坑。。。
  15. My collection of e-books and materials about Python
  16. Some tips of lambda in Python
  17. Some tips of dictionary in Python
  18. Using Python generator to generate Fibonacci sequence
  19. The conversion of Python script to PyC stepped on a pit...
  20. Python游戏开发,pygame模块,Python实现扫雷小游戏
  21. Python game development, pyGame module, python implementation of minesweeping games
  22. Python实用工具,email模块,Python实现邮件远程控制自己电脑
  23. Python utility, email module, python realizes mail remote control of its own computer
  24. 毫无头绪的自学Python,你可能连门槛都摸不到!【最佳学习路线】
  25. Python读取二进制文件代码方法解析
  26. Python字典的实现原理
  27. Without a clue, you may not even touch the threshold【 Best learning route]
  28. Parsing method of Python reading binary file code
  29. Implementation principle of Python dictionary
  30. You must know the function of pandas to parse JSON data - JSON_ normalize()
  31. Python实用案例,私人定制,Python自动化生成爱豆专属2021日历
  32. Python practical case, private customization, python automatic generation of Adu exclusive 2021 calendar
  33. 《Python实例》震惊了,用Python这么简单实现了聊天系统的脏话,广告检测
  34. "Python instance" was shocked and realized the dirty words and advertisement detection of the chat system in Python
  35. Convolutional neural network processing sequence for Python deep learning
  36. Python data structure and algorithm (1) -- enum type enum
  37. 超全大厂算法岗百问百答(推荐系统/机器学习/深度学习/C++/Spark/python)
  38. 【Python进阶】你真的明白NumPy中的ndarray吗?
  39. All questions and answers for algorithm posts of super large factories (recommended system / machine learning / deep learning / C + + / spark / Python)
  40. [advanced Python] do you really understand ndarray in numpy?
  41. 【Python进阶】Python进阶专栏栏主自述:不忘初心,砥砺前行
  42. [advanced Python] Python advanced column main readme: never forget the original intention and forge ahead
  43. python垃圾回收和缓存管理
  44. java调用Python程序
  45. java调用Python程序
  46. Python常用函数有哪些?Python基础入门课程
  47. Python garbage collection and cache management
  48. Java calling Python program
  49. Java calling Python program
  50. What functions are commonly used in Python? Introduction to Python Basics
  51. Python basic knowledge
  52. Anaconda5.2 安装 Python 库(MySQLdb)的方法
  53. Python实现对脑电数据情绪分析
  54. Anaconda 5.2 method of installing Python Library (mysqldb)
  55. Python implements emotion analysis of EEG data
  56. Master some advanced usage of Python in 30 seconds, which makes others envy it
  57. python爬取百度图片并对图片做一系列处理
  58. Python crawls Baidu pictures and does a series of processing on them
  59. python链接mysql数据库
  60. Python link MySQL database