python使用pandas和xlsxwriter读写xlsx文件

-牧野- 2020-11-13 08:02:40
Python pandas 使用 读写 xlsxwriter


已有xlsx文件如下:

 

1. 读取前n行所有数据

# coding: utf-8
import pandas as pd
# 1. 读取前n行所有数据
df = pd.read_excel('school.xlsx')#读取xlsx中第一个sheet
data1 = df.head(7) # 读取前7行的所有数据,dataFrame结构
data2 = df.values #list形式,读取表格所有数据
print("获取到所有的值:\n{0}".format(data1)) #格式化输出
print("获取到所有的值:\n{0}".format(data2)) #格式化输出


2. 读取特定行,特定列

# coding: utf-8
import pandas as pd
# 2. 读取特定行,特定列
df = pd.read_excel('school.xlsx') #读取xlsx中第一个sheet
data1 = df.ix[0].values #读取第一行所有数据,0表示第一行,不包含表头
data2 = df.ix[1,1] #读取指定行列位置数据
data3 = df.ix[[1,2]].values #读取指定多行
data4 = df.ix[:,[0]].values #读取指定列的所有行
#data4 = df[u'class'].values #同上
data5 = df.ix[:,[u'class',u'name']].values #读取指定键值列的所有行
print("数据:\n{0}".format(data1))
print("数据:\n{0}".format(data2))
print("数据:\n{0}".format(data3))
print("数据:\n{0}".format(data4))
print("数据:\n{0}".format(data5))


3. 获取xlsx文件行号,所有列名称

# coding: utf-8
import pandas as pd
# 3. 获取xlsx文件行号,所有列名称
df = pd.read_excel('school.xlsx') #读取xlsx中第一个sheet
print("输出行号列表{}".format(df.index.values)) # 获取xlsx文件的所有行号
print("输出列标题{}".format(df.columns.values)) #所有列名称


4. 读取xlsx数据转换为字典

# coding: utf-8
import pandas as pd
# 4. 读取xlsx数据转换为字典
df = pd.read_excel('school.xlsx') #读取xlsx中第一个sheet
test_data=[]
for i in df.index.values:#获取行号的索引,并对其进行遍历:
#根据i来获取每一行指定的数据 并利用to_dict转成字典
row_data=df.ix[i,['id','name','class','data','stature']].to_dict()
test_data.append(row_data)
print("最终获取到的数据是:{0}".format(test_data))


5. 写xlsx文件

#coding: utf-8
import xlsxwriter
# 创建工作簿
file_name = "first_book.xlsx"
workbook = xlsxwriter.Workbook(file_name)
# 创建工作表
worksheet = workbook.add_worksheet('sheet1')
# 写单元格
worksheet.write(0, 0, 'id')
worksheet.write(0,1, 'name')
worksheet.write(0,2, 'class')
worksheet.write(0,3, 'data')
# 写行
worksheet.write_row(1, 0, [1, 2, 3])
# 写列,其中列D需要大写
worksheet.write_column('D2', ['a', 'b', 'c'])
# 关闭工作簿
workbook.close()

写入的xlsx文件如下:

版权声明
本文为[-牧野-]所创,转载请带上原文链接,感谢
https://blog.csdn.net/dcrmg/article/details/88353004

  1. 利用Python爬虫获取招聘网站职位信息
  2. Using Python crawler to obtain job information of recruitment website
  3. Several highly rated Python libraries arrow, jsonpath, psutil and tenacity are recommended
  4. Python装饰器
  5. Python实现LDAP认证
  6. Python decorator
  7. Implementing LDAP authentication with Python
  8. Vscode configures Python development environment!
  9. In Python, how dare you say you can't log module? ️
  10. 我收藏的有关Python的电子书和资料
  11. python 中 lambda的一些tips
  12. python中字典的一些tips
  13. python 用生成器生成斐波那契数列
  14. python脚本转pyc踩了个坑。。。
  15. My collection of e-books and materials about Python
  16. Some tips of lambda in Python
  17. Some tips of dictionary in Python
  18. Using Python generator to generate Fibonacci sequence
  19. The conversion of Python script to PyC stepped on a pit...
  20. Python游戏开发,pygame模块,Python实现扫雷小游戏
  21. Python game development, pyGame module, python implementation of minesweeping games
  22. Python实用工具,email模块,Python实现邮件远程控制自己电脑
  23. Python utility, email module, python realizes mail remote control of its own computer
  24. 毫无头绪的自学Python,你可能连门槛都摸不到!【最佳学习路线】
  25. Python读取二进制文件代码方法解析
  26. Python字典的实现原理
  27. Without a clue, you may not even touch the threshold【 Best learning route]
  28. Parsing method of Python reading binary file code
  29. Implementation principle of Python dictionary
  30. You must know the function of pandas to parse JSON data - JSON_ normalize()
  31. Python实用案例,私人定制,Python自动化生成爱豆专属2021日历
  32. Python practical case, private customization, python automatic generation of Adu exclusive 2021 calendar
  33. 《Python实例》震惊了,用Python这么简单实现了聊天系统的脏话,广告检测
  34. "Python instance" was shocked and realized the dirty words and advertisement detection of the chat system in Python
  35. Convolutional neural network processing sequence for Python deep learning
  36. Python data structure and algorithm (1) -- enum type enum
  37. 超全大厂算法岗百问百答(推荐系统/机器学习/深度学习/C++/Spark/python)
  38. 【Python进阶】你真的明白NumPy中的ndarray吗?
  39. All questions and answers for algorithm posts of super large factories (recommended system / machine learning / deep learning / C + + / spark / Python)
  40. [advanced Python] do you really understand ndarray in numpy?
  41. 【Python进阶】Python进阶专栏栏主自述:不忘初心,砥砺前行
  42. [advanced Python] Python advanced column main readme: never forget the original intention and forge ahead
  43. python垃圾回收和缓存管理
  44. java调用Python程序
  45. java调用Python程序
  46. Python常用函数有哪些?Python基础入门课程
  47. Python garbage collection and cache management
  48. Java calling Python program
  49. Java calling Python program
  50. What functions are commonly used in Python? Introduction to Python Basics
  51. Python basic knowledge
  52. Anaconda5.2 安装 Python 库(MySQLdb)的方法
  53. Python实现对脑电数据情绪分析
  54. Anaconda 5.2 method of installing Python Library (mysqldb)
  55. Python implements emotion analysis of EEG data
  56. Master some advanced usage of Python in 30 seconds, which makes others envy it
  57. python爬取百度图片并对图片做一系列处理
  58. Python crawls Baidu pictures and does a series of processing on them
  59. python链接mysql数据库
  60. Python link MySQL database