Statistical learning theory -- implementation of perceptron learning algorithm in python (primitive form and dual form)

A good function 2020-11-13 02:56:56
statistical learning theory implementation perceptron

The learning algorithm of perceptron can be divided into primitive form and dual form .

Concrete model theory : Statistical learning —— perceptron
In this paper, two algorithms in the book are introduced , utilize python It's done .
When the machine learning algorithm is implemented , You can use powerful mathematical operations numpy library . But in this article , of no avail numpy library . Data sets are entered as arrays , When you do the relevant vector operations , Use the subscript of the array to operate on the data in the array .

1. The original form of perceptron learning algorithm

def vectorInnerProduct(vector1,vector2): # The realization of two vectors of inner product 
result = 0
length = len(vector1)
for i in range(length):
result += vector1[i] * vector2[i]
return result
def elementAddition(vector1,vector2): # Add the corresponding elements of two vectors 
for i in range(len(vector1)):
vector1[i] += vector2[i]
return vector1
def numberMultiply(num,vector): # Realize the multiplication of vectors 
tempVector = []
for i in range(len(vector)):
tempVector.append(vector[i] * num)
return tempVector
# You can't modify the original directly vector, Otherwise, the main function brought into the perceptron will modify the weight and bias ,
# While modifying the original dataset 
The three functions above , It's for the convenience of data ( vector ) Do the relevant operations , Write auxiliary function . It's simple
def perceptron(bias,dataSet,learnRate):
# The original algorithm of perceptron , You need to enter three variables , bias , Data sets and learning rates .
weightVector = [0 for i in range(len(dataSet[0][0]))] # The weight vector is initialized to 0
while True:
# Because we have to traverse the training set , Until there are no misclassification points , So use a while loop , And a variable that records the number of misclassification points errornum
errorNum = 0
for data in dataSet: # Go through the data set over and over again , To iterate 
if data[1] * (vectorInnerProduct(weightVector,data[0])+bias) <= 0:
errorNum += 1
weightVector = elementAddition(weightVector,numberMultiply(learnRate * data[1],data[0]))
bias += learnRate * data[1]
if errorNum == 0: # If there is no misclassification point , Exit loop 
return weightVector,bias # Return model parameters 
You can go on and on , Use the learning model to judge the classification of any instance point . This function only needs a simple if Statement can be implemented .
bias = 0
dataSet = [[[3,3],1],[[4,3],1],[[1,1],-1]]
learnRate = 1
# This example is from the statistical learning method book , The return result is ([1, 1], -3)

2. Dual form of perceptron learning algorithm

In the learning process of dual algorithm , The examples in the training set only appear in the form of inner product , We can calculate the inner product of the data in the training set in advance , And store it in matrix form , namely Gram matrix

def vectorInnerProduct(vector1,vector2): # Vector inner product 
result = 0
length = len(vector1)
for i in range(length):
result += vector1[i] * vector2[i]
return result
def gramMatrix(dataSet): # Calculation gram matrix 
length = len(dataSet)
gramMatrix = [[0 for i in range(length)] for i in range(length)]
for i in range(length):
for j in range(length):
gramMatrix[i][j] = vectorInnerProduct(dataSet[i][0],dataSet[j][0])
return gramMatrix
def elementAddition(vector1,vector2): # Vector elements add 
for i in range(len(vector1)):
vector1[i] += vector2[i]
return vector1
def numberMultiply(num,vector): # Number multiplication 
tempVector = []
for i in range(len(vector)):
tempVector.append(vector[i] * num)
return tempVector
def perceptron(dataSet,learnRate): # The dual variables are data set and learning rate ,alpha And the offset is set to... In the function 0
n = len(dataSet)
alphaList= [0 for i in range(n)]
bias = 0
gram = gramMatrix(dataSet)
while True: # The specific idea is the same as the original algorithm , It's just some details ( Judging conditions and learning expressions ) Modified it 
errorNum = 0
for i in range(n):
tempSum = 0
for j in range(n):
tempSum += alphaList[j] * dataSet[j][1] * gram[j][i]
if dataSet[i][1] * (tempSum + bias) <= 0:
errorNum += 1
alphaList[i] += learnRate
bias += learnRate * dataSet[i][1]
if errorNum == 0:
# What you learn in the process of learning is alpha, Take advantage of learning alpha Calculate the final weight vector 
weightVector = numberMultiply(alphaList[0]*dataSet[0][1],dataSet[0][0])
for i in range(1,n):
weightVector = elementAddition(weightVector,numberMultiply(alphaList[i]*dataSet[i][1],dataSet[i][0]))
return weightVector,bias
dataSet = [[[3,3],1],[[4,3],1],[[1,1],-1]]
# It's still the example in the book , The calculation result is ([1, 1], -3)
本文为[A good function]所创,转载请带上原文链接,感谢

  1. 利用Python爬虫获取招聘网站职位信息
  2. Using Python crawler to obtain job information of recruitment website
  3. Several highly rated Python libraries arrow, jsonpath, psutil and tenacity are recommended
  4. Python装饰器
  5. Python实现LDAP认证
  6. Python decorator
  7. Implementing LDAP authentication with Python
  8. Vscode configures Python development environment!
  9. In Python, how dare you say you can't log module? ️
  10. 我收藏的有关Python的电子书和资料
  11. python 中 lambda的一些tips
  12. python中字典的一些tips
  13. python 用生成器生成斐波那契数列
  14. python脚本转pyc踩了个坑。。。
  15. My collection of e-books and materials about Python
  16. Some tips of lambda in Python
  17. Some tips of dictionary in Python
  18. Using Python generator to generate Fibonacci sequence
  19. The conversion of Python script to PyC stepped on a pit...
  20. Python游戏开发,pygame模块,Python实现扫雷小游戏
  21. Python game development, pyGame module, python implementation of minesweeping games
  22. Python实用工具,email模块,Python实现邮件远程控制自己电脑
  23. Python utility, email module, python realizes mail remote control of its own computer
  24. 毫无头绪的自学Python,你可能连门槛都摸不到!【最佳学习路线】
  25. Python读取二进制文件代码方法解析
  26. Python字典的实现原理
  27. Without a clue, you may not even touch the threshold【 Best learning route]
  28. Parsing method of Python reading binary file code
  29. Implementation principle of Python dictionary
  30. You must know the function of pandas to parse JSON data - JSON_ normalize()
  31. Python实用案例,私人定制,Python自动化生成爱豆专属2021日历
  32. Python practical case, private customization, python automatic generation of Adu exclusive 2021 calendar
  33. 《Python实例》震惊了,用Python这么简单实现了聊天系统的脏话,广告检测
  34. "Python instance" was shocked and realized the dirty words and advertisement detection of the chat system in Python
  35. Convolutional neural network processing sequence for Python deep learning
  36. Python data structure and algorithm (1) -- enum type enum
  37. 超全大厂算法岗百问百答(推荐系统/机器学习/深度学习/C++/Spark/python)
  38. 【Python进阶】你真的明白NumPy中的ndarray吗?
  39. All questions and answers for algorithm posts of super large factories (recommended system / machine learning / deep learning / C + + / spark / Python)
  40. [advanced Python] do you really understand ndarray in numpy?
  41. 【Python进阶】Python进阶专栏栏主自述:不忘初心,砥砺前行
  42. [advanced Python] Python advanced column main readme: never forget the original intention and forge ahead
  43. python垃圾回收和缓存管理
  44. java调用Python程序
  45. java调用Python程序
  46. Python常用函数有哪些?Python基础入门课程
  47. Python garbage collection and cache management
  48. Java calling Python program
  49. Java calling Python program
  50. What functions are commonly used in Python? Introduction to Python Basics
  51. Python basic knowledge
  52. Anaconda5.2 安装 Python 库(MySQLdb)的方法
  53. Python实现对脑电数据情绪分析
  54. Anaconda 5.2 method of installing Python Library (mysqldb)
  55. Python implements emotion analysis of EEG data
  56. Master some advanced usage of Python in 30 seconds, which makes others envy it
  57. python爬取百度图片并对图片做一系列处理
  58. Python crawls Baidu pictures and does a series of processing on them
  59. python链接mysql数据库
  60. Python link MySQL database