Python, numpy and other common functions of data processing and visualization in machine learning

qinjianhuang 2020-11-13 05:26:11
python numpy common functions data


Write it at the front : This article aims at python Version is python3.0 above !


np.tile()

tile() Equivalent to copying the current row element or column element

import numpy as np
m1 = np.array([1, 2, 3, 4])
# Make two copies of the line , Columns are copied once into a new array 
print(np.tile(m1, (2, 1)))
print("===============")
# Make a copy of the line , Columns are copied twice into a new array 
print(np.tile(m1, (1, 2)))
print("===============")
# Make two copies of the line , Columns are copied twice into a new array 
print(np.tile(m1, (2, 2)))

Output :

D:\Python\python.exe E:/ML_Code/test_code.py
[[1 2 3 4]
[1 2 3 4]]
===============
[[1 2 3 4 1 2 3 4]]
===============
[[1 2 3 4 1 2 3 4]
[1 2 3 4 1 2 3 4]]

sum()

sum Function is to sum the elements , For two-dimensional array or above, according to the parameters axis To sum rows and columns, respectively ,axis=0 For sum by column ,axis=1 On behalf of the bank to sum up .

import numpy as np
m1 = np.array([1, 2, 3, 4])
# Sum elements one by one
print(sum(m1))
m2 = np.array([[6, 2, 2, 4], [1, 2, 4, 7]])
# Add by column
print(m2.sum(axis=0))
# Add by lines
print(m2.sum(axis=1))

Output :

D:\Python\python.exe E:/ML_Code/test_code.py
10
[ 7 4 6 11]
[14 14]
Process finished with exit code 0

shape and reshape

import numpy as np
a = np.array([[1, 2, 3], [4, 5, 6]])
print(a.shape)
b = np.reshape(a, 6)
print(b)
# -1 It is based on the size of the array to automatically infer dimensions
c = np.reshape(a, (3, -1)) # The value specified for will be inferred as 2
print(c)

Output :

D:\python-3.5.2\python.exe E:/ML_Code/test_code.py
(2, 3)
---
[1 2 3 4 5 6]
---
[[1 2]
[3 4]
[5 6]]

numpy.random.rand

import numpy as np
# Create an array of a given type , Fill it in a random sample of uniform distribution [0, 1) in 
print(np.random.rand(3))
print(np.random.rand(2, 2))

Output :

D:\python-3.5.2\python.exe E:/ML_Code/test_code.py
[ 0.03568079 0.68235136 0.64664722]
---
[[ 0.43591417 0.66372315]
[ 0.86257381 0.63238434]]

zip()

zip() Function to take iteratable objects as parameters , Package the corresponding elements in the object into tuples , Then return a list of these tuples .
If the number of elements in each iterator is inconsistent , Returns a list of the same length as the shortest object , utilize * The operator , Tuples can be unzipped into lists .

import numpy as np
a1 = np.array([1, 2, 3, 4])
a2 = np.array([11, 22, 33, 44])
z = zip(a1, a2)
print(list(z))

Output :

D:\Python\python.exe E:/ML_Code/test_code.py
[(1, 11), (2, 22), (3, 33), (4, 44)]
Process finished with exit code 0

Be careful : stay python 3 In later versions zip() Is an iterable object , It must be included in a list in , Easy to show all results at once . Otherwise, the following error will be reported :

<zip object at 0x01FB2E90>

Matrix correlation

import numpy as np
# Generate random matrix
myRand = np.random.rand(3, 4)
print(myRand)
# Generate unit matrix
myEye = np.eye(3)
print(myEye)
from numpy import *
# Sum all elements of a matrix
myMatrix = mat([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
print(sum(myMatrix))
# Calculate the rank of the matrix
print(linalg.det(myMatrix))
# Calculate the inverse of the matrix
print(linalg.inv(myMatrix))

Be careful :

from numpy import *
import numpy as np
vector1 = mat([[1, 2], [1, 1]])
vector2 = mat([[1, 2], [1, 1]])
vector3 = np.array([[1, 2], [1, 1]])
vector4 = np.array([[1, 2], [1, 1]])
# Python Self contained mat The operation rule of matrix is that both of them operate according to the rule of matrix multiplication
print(vector1 * vector2)
# Python Self contained mat The operation rule of matrix is that both of them operate according to the rule of matrix multiplication
print(dot(vector1, vector2))
# numpy In multiplication "*" It's array elements that are calculated one by one
print(vector3 * vector4)
# numpy In multiplication dot It's based on the rules of matrix multiplication
print(dot(vector3, vector4))

Output :

D:\python-3.5.2\python.exe D:/PyCharm/py_base/py_numpy.py
[[3 4]
[2 3]]
---
[[3 4]
[2 3]]
---
[[1 4]
[1 1]]
---
[[3 4]
[2 3]]

Vector correlation

Two n Dimension vector A(X11,X12,X13,...X1n) And B(X21,X22,X23,...X2n) The Euclidean distance between :

d12=k=1n(x1kx2k)2

In the form of vector operations :

d12=(AB)(AB)T

from numpy import *
# Calculate the Euclidean distance of two vectors 
vector1 = mat([1, 2])
vector2 = mat([3, 4])
print(sqrt((vector1 - vector2) * ((vector1 - vector2).T)))

Probability correlation

from numpy import *
import numpy as np
arrayOne = np.array([[1, 2, 3, 4, 5], [7, 4, 3, 3, 3]])
# Calculate the average of the first column
mv1 = mean(arrayOne[0])
# Calculate the average of the second column
mv2 = mean(arrayOne[1])
# Calculate the standard deviation of the first column
dv1 = std(arrayOne[0])
# Calculate the standard deviation of the second column
dv2 = std(arrayOne[1])
print(mv1)
print(mv2)
print(dv1)
print(dv2)
版权声明
本文为[qinjianhuang]所创,转载请带上原文链接,感谢

  1. 利用Python爬虫获取招聘网站职位信息
  2. Using Python crawler to obtain job information of recruitment website
  3. Several highly rated Python libraries arrow, jsonpath, psutil and tenacity are recommended
  4. Python装饰器
  5. Python实现LDAP认证
  6. Python decorator
  7. Implementing LDAP authentication with Python
  8. Vscode configures Python development environment!
  9. In Python, how dare you say you can't log module? ️
  10. 我收藏的有关Python的电子书和资料
  11. python 中 lambda的一些tips
  12. python中字典的一些tips
  13. python 用生成器生成斐波那契数列
  14. python脚本转pyc踩了个坑。。。
  15. My collection of e-books and materials about Python
  16. Some tips of lambda in Python
  17. Some tips of dictionary in Python
  18. Using Python generator to generate Fibonacci sequence
  19. The conversion of Python script to PyC stepped on a pit...
  20. Python游戏开发,pygame模块,Python实现扫雷小游戏
  21. Python game development, pyGame module, python implementation of minesweeping games
  22. Python实用工具,email模块,Python实现邮件远程控制自己电脑
  23. Python utility, email module, python realizes mail remote control of its own computer
  24. 毫无头绪的自学Python,你可能连门槛都摸不到!【最佳学习路线】
  25. Python读取二进制文件代码方法解析
  26. Python字典的实现原理
  27. Without a clue, you may not even touch the threshold【 Best learning route]
  28. Parsing method of Python reading binary file code
  29. Implementation principle of Python dictionary
  30. You must know the function of pandas to parse JSON data - JSON_ normalize()
  31. Python实用案例,私人定制,Python自动化生成爱豆专属2021日历
  32. Python practical case, private customization, python automatic generation of Adu exclusive 2021 calendar
  33. 《Python实例》震惊了,用Python这么简单实现了聊天系统的脏话,广告检测
  34. "Python instance" was shocked and realized the dirty words and advertisement detection of the chat system in Python
  35. Convolutional neural network processing sequence for Python deep learning
  36. Python data structure and algorithm (1) -- enum type enum
  37. 超全大厂算法岗百问百答(推荐系统/机器学习/深度学习/C++/Spark/python)
  38. 【Python进阶】你真的明白NumPy中的ndarray吗?
  39. All questions and answers for algorithm posts of super large factories (recommended system / machine learning / deep learning / C + + / spark / Python)
  40. [advanced Python] do you really understand ndarray in numpy?
  41. 【Python进阶】Python进阶专栏栏主自述:不忘初心,砥砺前行
  42. [advanced Python] Python advanced column main readme: never forget the original intention and forge ahead
  43. python垃圾回收和缓存管理
  44. java调用Python程序
  45. java调用Python程序
  46. Python常用函数有哪些?Python基础入门课程
  47. Python garbage collection and cache management
  48. Java calling Python program
  49. Java calling Python program
  50. What functions are commonly used in Python? Introduction to Python Basics
  51. Python basic knowledge
  52. Anaconda5.2 安装 Python 库(MySQLdb)的方法
  53. Python实现对脑电数据情绪分析
  54. Anaconda 5.2 method of installing Python Library (mysqldb)
  55. Python implements emotion analysis of EEG data
  56. Master some advanced usage of Python in 30 seconds, which makes others envy it
  57. python爬取百度图片并对图片做一系列处理
  58. Python crawls Baidu pictures and does a series of processing on them
  59. python链接mysql数据库
  60. Python link MySQL database