Using Python viz and netron to visualize the network structure of Python

-Pastoral- 2020-11-13 08:02:23
using python viz netron visualize

One Use pytorchviz visualization


  • Install dependencies and pytorchviz

pip install graphviz
pip install tochviz ( or pip install git+


Graphviz yes AT&T Developed an open source graphics visualization software , According to dot An undirected graph drawn in a scripting language ( Shows the simplest relationships between objects ) Draw an intuitive tree diagram .
Graphviz stay Windows Installation in needs to be downloaded Release package , And configure environment variables , Otherwise, an error will be reported :

graphviz.backend.ExecutableNotFound: failed to execute [‘dot’, ‘-Tpng’, ‘-O’, ‘tmp’], make sure the Graphviz executables are on your systems’ PATH


Graphviz Download address

After downloading, it's a “release” Folder , hold “release\bin” Directories adding to system environment variables , After that, input “dot -V”, Display the following information to indicate Graphviz Configuration is successful :


  • torchviz visualization torch Network structure

# Created by Pastoral CSDN
import torch
from torch import nn
from torchviz import make_dot, make_dot_from_trace
model = nn.Sequential()
model.add_module('W0', nn.Linear(8, 16))
model.add_module('tanh', nn.Tanh())
model.add_module('W1', nn.Linear(16, 1))
x = torch.randn(1,8)
vis_graph = make_dot(model(x), params=dict(model.named_parameters()))
vis_graph.view() # Will save one in the current directory “Digraph.gv.pdf” file , And open... In the default browser
with torch.onnx.set_training(model, False):
trace, _ = torch.jit.get_trace_graph(model, args=(x,))


call “make_dot” Method to create a dot object , Use “view” The method shows .

pytorch1.2 and 1.3 Used in version “torch.jit.get_trace_graph” There may be a mistake ,1.1 edition ok.

AttributeError: 'torch._C.Value' object has no attribute 'uniqueName'


Visualization results :


Two Use Netron visualization


Netron Open source address :
Netron The developers are Lutz Roeder, One from Microsoft Visual Studio The handsome guy of the team :


Netron Is a support offline view “ Various ” Model visualization artifact of neural network framework , Among them “ Various ” Include :

  1. ONNX (.onnx, .pb, .pbtxt)
  2. Keras (.h5, .keras)
  3. Core ML (.mlmodel)
  4. Caffe (.caffemodel, .prototxt)
  5. Caffe2 (predict_net.pb, predict_net.pbtxt)
  6. MXNet (.model, -symbol.json)
  7. NCNN (.param)
  8. TensorFlow Lite (.tflite)
  9. TorchScript (.pt, .pth)
  10. PyTorch (.pt, .pth)
  11. Torch (.t7)
  12. Arm NN (.armnn)
  13. BigDL (.bigdl, .model)
  14. Chainer, (.npz, .h5)
  15. CNTK (.model, .cntk)
  16. Deeplearning4j (.zip)
  17. Darknet (.cfg)
  18. ML.NET (.zip)
  19. MNN (.mnn)
  20. OpenVINO (.xml)
  21. PaddlePaddle (.zip, __model__)
  22. scikit-learn (.pkl)
  23. TensorFlow.js (model.json, .pb)
  24. TensorFlow (.pb, .meta, .pbtxt)

Um. , That's enough .

Netron It's easy to use , The author provides installation packages for each platform , Open after installation , Drag the saved model file in .
Take the model above as an example , The first pytorch The model is saved :

import torch
from torch import nn
from torchviz import make_dot, make_dot_from_trace
model = nn.Sequential()
model.add_module('W0', nn.Linear(8, 16))
model.add_module('tanh', nn.Tanh())
model.add_module('W1', nn.Linear(16, 1)), 'model.pth')  # Save the model 

After use Netron Open the saved “model.pth”:


The network structure is very clear , Be clear at a glance , Further information about the operation can also be displayed on the right side .

If you're too lazy to install , You can also use the author's online Netron viewer , Address :


  1. 利用Python爬虫获取招聘网站职位信息
  2. Using Python crawler to obtain job information of recruitment website
  3. Several highly rated Python libraries arrow, jsonpath, psutil and tenacity are recommended
  4. Python装饰器
  5. Python实现LDAP认证
  6. Python decorator
  7. Implementing LDAP authentication with Python
  8. Vscode configures Python development environment!
  9. In Python, how dare you say you can't log module? ️
  10. 我收藏的有关Python的电子书和资料
  11. python 中 lambda的一些tips
  12. python中字典的一些tips
  13. python 用生成器生成斐波那契数列
  14. python脚本转pyc踩了个坑。。。
  15. My collection of e-books and materials about Python
  16. Some tips of lambda in Python
  17. Some tips of dictionary in Python
  18. Using Python generator to generate Fibonacci sequence
  19. The conversion of Python script to PyC stepped on a pit...
  20. Python游戏开发,pygame模块,Python实现扫雷小游戏
  21. Python game development, pyGame module, python implementation of minesweeping games
  22. Python实用工具,email模块,Python实现邮件远程控制自己电脑
  23. Python utility, email module, python realizes mail remote control of its own computer
  24. 毫无头绪的自学Python,你可能连门槛都摸不到!【最佳学习路线】
  25. Python读取二进制文件代码方法解析
  26. Python字典的实现原理
  27. Without a clue, you may not even touch the threshold【 Best learning route]
  28. Parsing method of Python reading binary file code
  29. Implementation principle of Python dictionary
  30. You must know the function of pandas to parse JSON data - JSON_ normalize()
  31. Python实用案例,私人定制,Python自动化生成爱豆专属2021日历
  32. Python practical case, private customization, python automatic generation of Adu exclusive 2021 calendar
  33. 《Python实例》震惊了,用Python这么简单实现了聊天系统的脏话,广告检测
  34. "Python instance" was shocked and realized the dirty words and advertisement detection of the chat system in Python
  35. Convolutional neural network processing sequence for Python deep learning
  36. Python data structure and algorithm (1) -- enum type enum
  37. 超全大厂算法岗百问百答(推荐系统/机器学习/深度学习/C++/Spark/python)
  38. 【Python进阶】你真的明白NumPy中的ndarray吗?
  39. All questions and answers for algorithm posts of super large factories (recommended system / machine learning / deep learning / C + + / spark / Python)
  40. [advanced Python] do you really understand ndarray in numpy?
  41. 【Python进阶】Python进阶专栏栏主自述:不忘初心,砥砺前行
  42. [advanced Python] Python advanced column main readme: never forget the original intention and forge ahead
  43. python垃圾回收和缓存管理
  44. java调用Python程序
  45. java调用Python程序
  46. Python常用函数有哪些?Python基础入门课程
  47. Python garbage collection and cache management
  48. Java calling Python program
  49. Java calling Python program
  50. What functions are commonly used in Python? Introduction to Python Basics
  51. Python basic knowledge
  52. Anaconda5.2 安装 Python 库(MySQLdb)的方法
  53. Python实现对脑电数据情绪分析
  54. Anaconda 5.2 method of installing Python Library (mysqldb)
  55. Python implements emotion analysis of EEG data
  56. Master some advanced usage of Python in 30 seconds, which makes others envy it
  57. python爬取百度图片并对图片做一系列处理
  58. Python crawls Baidu pictures and does a series of processing on them
  59. python链接mysql数据库
  60. Python link MySQL database