Detailed explanation of python3 list sorting function

ztenv 2020-11-13 13:00:03
detailed explanation python3 python list

Python3 list Sort function details

One 、            List sort Sorting function

The function prototype :


The functionality :

Sort the original list , After sorting , The original list becomes an ordered list . By default ( When no parameters are passed in ) Sort in dictionary order .

Function parameter :

(1)     key: It's basically a comparison element , There is only one parameter , The parameters of the specific function are taken from the iterable object . Specifies an element in an iteratable object to sort. Specifies a single element or multiple elements to use when sorting 、lambda expression ;

(2)     reverse: Refers to whether the word sorting rule is ascending or descending , Sort ascending by default ;

Two 、            Examples of sorting

1.       String sort

def list_sort_string():
list.sort() # In ascending dictionary order
print(" Ascending :",list)
list.sort(reverse=True) # Sort in descending order
print(" Descending :",list)


Sorting result :


 Ascending : ['C', 'C++', 'Delphi', 'Golang', 'Python', 'c', 'c++', 'delphi', 'golang', 'python']
Descending : ['python', 'golang', 'delphi', 'c++', 'c', 'Python', 'Golang', 'Delphi', 'C++', 'C']

2.       Numerical sort

def list_sort_number():
print(" Ascending :",list)
print(" Descending :",list)

Sorting result :

 Ascending : [10, 30, 40, 50, 50.1, 60, 80, 90, 100]
Descending : [100, 90, 80, 60, 50.1, 50, 40, 30, 10]


3.       Sort according to the properties of class objects in the list


class element(object):
def __init__(self,id="",name=""):
def __lt__(self, other): # override < The operator
return True
return False
def __str__(self): # override __str__
return "id={0},name={1}".format(,
def sort_by_attribute():
for item in list:


because list.sort() Function when sorting , Using less than sign contrast , So custom data types need override __lt__( Less than ) Function to achieve sorting .


according to element Of id Property sort

Sort the result of the column :


4.       Sort by the length of the elements in the list

def list_sort_by_length():
list.sort(key=lambda ele:len(ele)) # In ascending order of element length
print(" Ascending :",list)
list.sort(key=lambda ele:len(ele),reverse=True) # Sort in descending order
print(" Descending :",list)


With the help of lambda expression , Calculation list The length of the elements in the list , Sort by the length of the elements


Results of sorting :

 Ascending : ['c', 'C', 'c++', 'C++', 'delphi', 'Delphi', 'python', 'Python', 'golang', 'Golang']
Descending : ['delphi', 'Delphi', 'python', 'Python', 'golang', 'Golang', 'c++', 'C++', 'c', 'C']


5.       Sort by multiple attributes of elements in the list :


def two_d_list_sort():
list=[ ["1","c++","demo"],
list.sort(key=lambda ele:ele[0])# According to the first 1 Order of elements
list.sort(key=lambda ele:ele[1]) # First, according to the 2 Order of elements
list.sort(key=lambda ele:(ele[1],ele[0])) # First, according to the 2 Order of elements , And then according to 1 Order of elements


By the same token lambda Expression complete , Of course, you can also define a relationship with labmda Functions with the same meaning realize sorting .


Sorting result :

[['1', 'c++', 'demo'], ['1', 'c', 'test'], ['2', 'java', ''], ['4', 'python', 'gil'], ['5', 'swift', 'apple'], ['8', 'golang', 'google']]
[['1', 'c', 'test'], ['1', 'c++', 'demo'], ['8', 'golang', 'google'], ['2', 'java', ''], ['4', 'python', 'gil'], ['5', 'swift', 'apple']]
[['1', 'c++', 'demo'], ['1', 'c', 'test'], ['8', 'golang', 'google'], ['2', 'java', ''], ['4', 'python', 'gil'], ['5', 'swift', 'apple']]


6.       Dynamically sort according to the user specified index


occasionally , Before you write the code , I don't know which columns to sort according to the two-dimensional table , It's based on input or configuration when the program is running , In order to solve the problem of dynamic sorting by multiple columns or attributes , With the help of eval() function ,eval Function can compile a string into python Code and run , So as to achieve dynamic sorting according to multiple columns or attributes .

Sorting result :

 Sort index : 0 [['1', 'c++', 'demo'], ['1', 'c', 'test'], ['2', 'java', ''], ['4', 'python', 'gil'], ['5', 'swift', 'apple'], ['8', 'golang', 'google']]
Sort index : 1 [['1', 'c', 'test'], ['1', 'c++', 'demo'], ['8', 'golang', 'google'], ['2', 'java', ''], ['4', 'python', 'gil'], ['5', 'swift', 'apple']]
Sort index : 2 [['2', 'java', ''], ['5', 'swift', 'apple'], ['1', 'c++', 'demo'], ['4', 'python', 'gil'], ['8', 'golang', 'google'], ['1', 'c', 'test']]
Sort index : 1,0 [['1', 'c++', 'demo'], ['1', 'c', 'test'], ['8', 'golang', 'google'], ['2', 'java', ''], ['4', 'python', 'gil'], ['5', 'swift', 'apple']]


Sum up , It basically sums up list.sort Most of the scenarios used by , as follows :


1、 Default sort

2、 Sort according to a single attribute of a class object , Of course, it can also be extended to sort according to multiple attributes of class objects

3、 Sort the elements according to their intrinsic properties , Such as : length 、 The first N Elements, etc . For simplicity , So with the help of lambda expression , Of course, you can use ordinary functions instead of lambda expression

4、 Dynamic sorting by multiple columns , At the same time with the help of lambda and eval() Function implementation

5、 In addition, compared with Python2,Python3 To cancel the sort Function  cmp The way , Only use key The way .
      therefore python2 use cmp The functions written in this way are migrated to python3 You need to convert .
     from functools import cmp_to_key

    sort(iterable, key=cmp_to_key(cmp_fun))

   < thank CSDN:xpresslink Correction >

There may be other scenarios that don't involve , But I believe , The above conditions can satisfy 90% The above scene ; If you have any problem in use, please leave a message .


  1. 利用Python爬虫获取招聘网站职位信息
  2. Using Python crawler to obtain job information of recruitment website
  3. Several highly rated Python libraries arrow, jsonpath, psutil and tenacity are recommended
  4. Python装饰器
  5. Python实现LDAP认证
  6. Python decorator
  7. Implementing LDAP authentication with Python
  8. Vscode configures Python development environment!
  9. In Python, how dare you say you can't log module? ️
  10. 我收藏的有关Python的电子书和资料
  11. python 中 lambda的一些tips
  12. python中字典的一些tips
  13. python 用生成器生成斐波那契数列
  14. python脚本转pyc踩了个坑。。。
  15. My collection of e-books and materials about Python
  16. Some tips of lambda in Python
  17. Some tips of dictionary in Python
  18. Using Python generator to generate Fibonacci sequence
  19. The conversion of Python script to PyC stepped on a pit...
  20. Python游戏开发,pygame模块,Python实现扫雷小游戏
  21. Python game development, pyGame module, python implementation of minesweeping games
  22. Python实用工具,email模块,Python实现邮件远程控制自己电脑
  23. Python utility, email module, python realizes mail remote control of its own computer
  24. 毫无头绪的自学Python,你可能连门槛都摸不到!【最佳学习路线】
  25. Python读取二进制文件代码方法解析
  26. Python字典的实现原理
  27. Without a clue, you may not even touch the threshold【 Best learning route]
  28. Parsing method of Python reading binary file code
  29. Implementation principle of Python dictionary
  30. You must know the function of pandas to parse JSON data - JSON_ normalize()
  31. Python实用案例,私人定制,Python自动化生成爱豆专属2021日历
  32. Python practical case, private customization, python automatic generation of Adu exclusive 2021 calendar
  33. 《Python实例》震惊了,用Python这么简单实现了聊天系统的脏话,广告检测
  34. "Python instance" was shocked and realized the dirty words and advertisement detection of the chat system in Python
  35. Convolutional neural network processing sequence for Python deep learning
  36. Python data structure and algorithm (1) -- enum type enum
  37. 超全大厂算法岗百问百答(推荐系统/机器学习/深度学习/C++/Spark/python)
  38. 【Python进阶】你真的明白NumPy中的ndarray吗?
  39. All questions and answers for algorithm posts of super large factories (recommended system / machine learning / deep learning / C + + / spark / Python)
  40. [advanced Python] do you really understand ndarray in numpy?
  41. 【Python进阶】Python进阶专栏栏主自述:不忘初心,砥砺前行
  42. [advanced Python] Python advanced column main readme: never forget the original intention and forge ahead
  43. python垃圾回收和缓存管理
  44. java调用Python程序
  45. java调用Python程序
  46. Python常用函数有哪些?Python基础入门课程
  47. Python garbage collection and cache management
  48. Java calling Python program
  49. Java calling Python program
  50. What functions are commonly used in Python? Introduction to Python Basics
  51. Python basic knowledge
  52. Anaconda5.2 安装 Python 库(MySQLdb)的方法
  53. Python实现对脑电数据情绪分析
  54. Anaconda 5.2 method of installing Python Library (mysqldb)
  55. Python implements emotion analysis of EEG data
  56. Master some advanced usage of Python in 30 seconds, which makes others envy it
  57. python爬取百度图片并对图片做一系列处理
  58. Python crawls Baidu pictures and does a series of processing on them
  59. python链接mysql数据库
  60. Python link MySQL database