Notes of Python cookbook 3rd (2.18): string token parsing

Giant ship 2020-11-15 01:20:24
notes python cookbook 3rd rd

String token parsing


You have a string , You want to parse it from left to right as a token stream .


If you have a text string like this :

text = 'foo = 23 + 42 * 10'

To tokenize strings , You don't just need to match patterns , You also have to specify the type of pattern . such as , You may want to convert a string into a sequence pair like this :

tokens = [('NAME', 'foo'), ('EQ','='), ('NUM', '23'), ('PLUS','+'),
('NUM', '42'), ('TIMES', '*'), ('NUM', 10')]

This segmentation is for execution , The first step is to define all possible tokens using a regular expression named capture group as follows , Including Spaces :

import re
NAME = r'(?P<NAME>[a-zA-Z_][a-zA-Z_0-9]*)'
NUM = r'(?P<NUM>\d+)'
PLUS = r'(?P<PLUS>\+)'
TIMES = r'(?P<TIMES>\*)'
EQ = r'(?P<EQ>=)'
WS = r'(?P<WS>\s+)'
master_pat = re.compile('j'.join([NAME, NUM, PLUS, TIMES, EQ, WS]))

In the pattern above , ?P<TOKENNAME> Used to name a pattern , For later use . next step , To tokenize , Using schema objects is rarely known scanner() Method . This method will create a scanner object , It's called constantly on this object match() Method will scan the target text step by step , One match at a time . Here's a demo of scanner Examples of how interactive objects work :

>>> scanner = master_pat.scanner('foo = 42')
>>> scanner.match()
<_sre.SRE_Match object at 0x100677738>
>>> _.lastgroup,
('NAME', 'foo')
>>> scanner.match()
<_sre.SRE_Match object at 0x100677738>
>>> _.lastgroup,
('WS', ' ')
>>> scanner.match()
<_sre.SRE_Match object at 0x100677738>
>>> _.lastgroup,
('EQ', '=')
>>> scanner.match()
<_sre.SRE_Match object at 0x100677738>
>>> _.lastgroup,
('WS', ' ')
>>> scanner.match()
<_sre.SRE_Match object at 0x100677738>
>>> _.lastgroup,
('NUM', '42')
>>> scanner.match()

When you actually use this technology , It's easy to package the above code into a generator as follows :

def generate_tokens(pat, text):
Token = namedtuple('Token', ['type', 'value'])
scanner = pat.scanner(text)
for m in iter(scanner.match, None):
yield Token(m.lastgroup,
# Example use
for tok in generate_tokens(master_pat, 'foo = 42'):
# Produces output
# Token(type='NAME', value='foo')
# Token(type='WS', value=' ')
# Token(type='EQ', value='=')
# Token(type='WS', value=' ')
# Token(type='NUM', value='42')

Filter the token if you think about it , You can define more generator functions or use a generator expression . such as , Here's how to filter all blank tokens :

tokens = (tok for tok in generate_tokens(master_pat, text) if tok.type != 'WS')
for tok in tokens:


Generally speaking, tokenization is the first step in many advanced text parsing and processing . To use the scanning method above , You need to remember some important points here . The first is that you have to make sure that you use regular expressions to specify all possible sequences of text in your input . If any unmatched text appears , The scan will stop . That's why the blank character token must be specified in the example above .

The order of tokens also has an impact . re Modules will match in the specified order . therefore , If a pattern happens to be a substring of another longer pattern , Then you need to make sure that the long pattern is written first . such as :

LT = r'(?P<LT><)'
LE = r'(?P<LE><=)'
EQ = r'(?P<EQ>=)'
master_pat = re.compile('j'.join([LE, LT, EQ])) # Correct
# master_pat = re.compile('j'.join([LT, LE, EQ])) # Incorrect

The second pattern is wrong , Because it will put the text <= Match as token LT Follow closely EQ, Not a single token LE, This is not what we want .

Last , You need to pay attention to the pattern of substrings . such as , Suppose you have the following two patterns

PRINT = r'(?P<PRINT>print)'
NAME = r'(?P<NAME>[a-zA-Z_][a-zA-Z_0-9]*)'
master_pat = re.compile('j'.join([PRINT, NAME]))
for tok in generate_tokens(master_pat, 'printer'):
# Outputs :
# Token(type='PRINT', value='print')
# Token(type='NAME', value='er')

About higher-level tokenization , You may need to check PyParsing perhaps PLY package . A call PLY In the next section we'll show you an example of .

本文为[Giant ship]所创,转载请带上原文链接,感谢

  1. 利用Python爬虫获取招聘网站职位信息
  2. Using Python crawler to obtain job information of recruitment website
  3. Several highly rated Python libraries arrow, jsonpath, psutil and tenacity are recommended
  4. Python装饰器
  5. Python实现LDAP认证
  6. Python decorator
  7. Implementing LDAP authentication with Python
  8. Vscode configures Python development environment!
  9. In Python, how dare you say you can't log module? ️
  10. 我收藏的有关Python的电子书和资料
  11. python 中 lambda的一些tips
  12. python中字典的一些tips
  13. python 用生成器生成斐波那契数列
  14. python脚本转pyc踩了个坑。。。
  15. My collection of e-books and materials about Python
  16. Some tips of lambda in Python
  17. Some tips of dictionary in Python
  18. Using Python generator to generate Fibonacci sequence
  19. The conversion of Python script to PyC stepped on a pit...
  20. Python游戏开发,pygame模块,Python实现扫雷小游戏
  21. Python game development, pyGame module, python implementation of minesweeping games
  22. Python实用工具,email模块,Python实现邮件远程控制自己电脑
  23. Python utility, email module, python realizes mail remote control of its own computer
  24. 毫无头绪的自学Python,你可能连门槛都摸不到!【最佳学习路线】
  25. Python读取二进制文件代码方法解析
  26. Python字典的实现原理
  27. Without a clue, you may not even touch the threshold【 Best learning route]
  28. Parsing method of Python reading binary file code
  29. Implementation principle of Python dictionary
  30. You must know the function of pandas to parse JSON data - JSON_ normalize()
  31. Python实用案例,私人定制,Python自动化生成爱豆专属2021日历
  32. Python practical case, private customization, python automatic generation of Adu exclusive 2021 calendar
  33. 《Python实例》震惊了,用Python这么简单实现了聊天系统的脏话,广告检测
  34. "Python instance" was shocked and realized the dirty words and advertisement detection of the chat system in Python
  35. Convolutional neural network processing sequence for Python deep learning
  36. Python data structure and algorithm (1) -- enum type enum
  37. 超全大厂算法岗百问百答(推荐系统/机器学习/深度学习/C++/Spark/python)
  38. 【Python进阶】你真的明白NumPy中的ndarray吗?
  39. All questions and answers for algorithm posts of super large factories (recommended system / machine learning / deep learning / C + + / spark / Python)
  40. [advanced Python] do you really understand ndarray in numpy?
  41. 【Python进阶】Python进阶专栏栏主自述:不忘初心,砥砺前行
  42. [advanced Python] Python advanced column main readme: never forget the original intention and forge ahead
  43. python垃圾回收和缓存管理
  44. java调用Python程序
  45. java调用Python程序
  46. Python常用函数有哪些?Python基础入门课程
  47. Python garbage collection and cache management
  48. Java calling Python program
  49. Java calling Python program
  50. What functions are commonly used in Python? Introduction to Python Basics
  51. Python basic knowledge
  52. Anaconda5.2 安装 Python 库(MySQLdb)的方法
  53. Python实现对脑电数据情绪分析
  54. Anaconda 5.2 method of installing Python Library (mysqldb)
  55. Python implements emotion analysis of EEG data
  56. Master some advanced usage of Python in 30 seconds, which makes others envy it
  57. python爬取百度图片并对图片做一系列处理
  58. Python crawls Baidu pictures and does a series of processing on them
  59. python链接mysql数据库
  60. Python link MySQL database