Hand in hand teaching you Pareto analysis with Python

Huazhang Technology 2020-11-16 16:23:02
hand hand teaching pareto analysis


Reading guide : This article takes you to Python Do contribution analysis . Contribution analysis is also called Pareto analysis , Its principle is Pareto's law , also called 20/80 The laws of .

author : Zhang Liangjun Tan Liyun Liu Mingjun Jiang Jianming

source : big data DT(ID:hzdashuju)

The same investment in different places will produce different benefits . for example , For a company ,80% The profits of the company often come from 20% Best selling product , Others 80% Our products only produce 20% The profits of the .

As far as catering enterprises are concerned , The application of contribution analysis can focus on improving the highest profit of a certain cuisine 80% The dishes , Or focus on the development of the most comprehensive impact of 80% The department in charge of the . This result can be presented intuitively by Pareto Diagram . chart 3-10 It's the seafood series of one month 10 A dish A1~A10 The profit of ( It has been sorted in descending order ).

▲ chart 3-10 Pareto chart of food profit data

From the figure 3-10 You know , variety of dishes A1~A7 common 7 A dish , It's the number of dishes 70%, The total profit accounts for the month's profit 85.0033%. According to Pareto's law , We should increase the number of dishes A1~A7 Cost input of , Cut down on dishes A8~A10 Cost input of , In order to get a higher profit .

surface 3-5 It's the food profit data corresponding to the catering system , Draw a Pareto chart of food profit , Such as code list 3-8 Shown .

▼ surface 3-5 Food profit data of catering system

  • Code list 3-8 Draw Pareto chart of food profit data
# Pareto chart of food profit data
import pandas as pd
# Initialize parameters
dish_profit = '../data/catering_dish_profit.xls'# Food and beverage profit data
data = pd.read_excel(dish_profit, index_col=' Dish name ')
data = data[' profit '].copy()
data.sort_values(ascending=False)
import matplotlib.pyplot as plt # Import image library
plt.rcParams['font.sans-serif'] = ['SimHei'] # Used to display Chinese labels normally
plt.rcParams['axes.unicode_minus'] = False # Used to display negative sign normally
plt.figure()
data.plot(kind='bar')
plt.ylabel(' profit ( element )')
p = 1.0*data.cumsum()/data.sum()
p.plot(color='r', secondary_y=True, style='-o',linewidth=2)
plt.annotate(format(p[6], '.4%'), xy=(6, p[6]), xytext=(6*0.9, p[6]*0.9), arrow-props=dict(arrowstyle="->", connectionstyle="arc3,rad=.2"))
# Add notes , namely 85% Mark at . This includes the specified arrow style .
plt.ylabel(' profit ( The proportion )')
plt.show()

About author : Zhang Liangjun , Senior big data mining and Analysis Expert 、 Pattern recognition experts 、AI technician . Yes 10 Years of big data mining and analysis experience , Good at Python、R、Hadoop、Matlab And so on , Machine learning, etc AI Technology driven data analysis also has in-depth research .

This article is excerpted from 《Python Data analysis and mining practice 》( The first 2 edition ), Issued under the authority of the publisher .

This article is from WeChat official account. - big data (hzdashuju) , author : Zhang Liangjun Tan Liyun etc.

The source and reprint of the original text are detailed in the text , If there is any infringement , Please contact the yunjia_community@tencent.com Delete .

Original publication time : 2020-11-06

Participation of this paper Tencent cloud media sharing plan , You are welcome to join us , share .

版权声明
本文为[Huazhang Technology]所创,转载请带上原文链接,感谢

  1. 利用Python爬虫获取招聘网站职位信息
  2. Using Python crawler to obtain job information of recruitment website
  3. Several highly rated Python libraries arrow, jsonpath, psutil and tenacity are recommended
  4. Python装饰器
  5. Python实现LDAP认证
  6. Python decorator
  7. Implementing LDAP authentication with Python
  8. Vscode configures Python development environment!
  9. In Python, how dare you say you can't log module? ️
  10. 我收藏的有关Python的电子书和资料
  11. python 中 lambda的一些tips
  12. python中字典的一些tips
  13. python 用生成器生成斐波那契数列
  14. python脚本转pyc踩了个坑。。。
  15. My collection of e-books and materials about Python
  16. Some tips of lambda in Python
  17. Some tips of dictionary in Python
  18. Using Python generator to generate Fibonacci sequence
  19. The conversion of Python script to PyC stepped on a pit...
  20. Python游戏开发,pygame模块,Python实现扫雷小游戏
  21. Python game development, pyGame module, python implementation of minesweeping games
  22. Python实用工具,email模块,Python实现邮件远程控制自己电脑
  23. Python utility, email module, python realizes mail remote control of its own computer
  24. 毫无头绪的自学Python,你可能连门槛都摸不到!【最佳学习路线】
  25. Python读取二进制文件代码方法解析
  26. Python字典的实现原理
  27. Without a clue, you may not even touch the threshold【 Best learning route]
  28. Parsing method of Python reading binary file code
  29. Implementation principle of Python dictionary
  30. You must know the function of pandas to parse JSON data - JSON_ normalize()
  31. Python实用案例,私人定制,Python自动化生成爱豆专属2021日历
  32. Python practical case, private customization, python automatic generation of Adu exclusive 2021 calendar
  33. 《Python实例》震惊了,用Python这么简单实现了聊天系统的脏话,广告检测
  34. "Python instance" was shocked and realized the dirty words and advertisement detection of the chat system in Python
  35. Convolutional neural network processing sequence for Python deep learning
  36. Python data structure and algorithm (1) -- enum type enum
  37. 超全大厂算法岗百问百答(推荐系统/机器学习/深度学习/C++/Spark/python)
  38. 【Python进阶】你真的明白NumPy中的ndarray吗?
  39. All questions and answers for algorithm posts of super large factories (recommended system / machine learning / deep learning / C + + / spark / Python)
  40. [advanced Python] do you really understand ndarray in numpy?
  41. 【Python进阶】Python进阶专栏栏主自述:不忘初心,砥砺前行
  42. [advanced Python] Python advanced column main readme: never forget the original intention and forge ahead
  43. python垃圾回收和缓存管理
  44. java调用Python程序
  45. java调用Python程序
  46. Python常用函数有哪些?Python基础入门课程
  47. Python garbage collection and cache management
  48. Java calling Python program
  49. Java calling Python program
  50. What functions are commonly used in Python? Introduction to Python Basics
  51. Python basic knowledge
  52. Anaconda5.2 安装 Python 库(MySQLdb)的方法
  53. Python实现对脑电数据情绪分析
  54. Anaconda 5.2 method of installing Python Library (mysqldb)
  55. Python implements emotion analysis of EEG data
  56. Master some advanced usage of Python in 30 seconds, which makes others envy it
  57. python爬取百度图片并对图片做一系列处理
  58. Python crawls Baidu pictures and does a series of processing on them
  59. python链接mysql数据库
  60. Python link MySQL database