[Python foundation] jupyter Notebook & Lab shortcut key

python foundation jupyter notebook lab


Jupyter There are two patterns , Command mode and edit mode , There are different shortcut keys .

「 Edit mode ( Key Enter Switch ):」

You can type code or text into the unit , The cell is surrounded by a blue border , And the shortcut key in command mode does not work ;

「 Command mode ( Key Esc Turn on ):」

You can run cells with shortcut commands , Moving cells , Switch cell editing status and so on , The cells are surrounded by gray lines , And the shortcut key in edit mode doesn't work ;

Edit mode shortcut key

Shortcut key

effect

Esc

Switch to command mode

Ctrl-M

Switch to command mode

Tab

Code completion or indentation

Shift-Tab

Tips

Ctrl-]

Indent Indent right

Ctrl-[

Undo indent Indent left

Ctrl-A

Future generations

Ctrl-Z

revoke

Ctrl-Shift-Z

redo

Ctrl-Y

redo

Ctrl-Home

Jump to the beginning of the unit

Ctrl-Up

Jump to the beginning of the unit

Ctrl-End

Jump to the end of the unit

Ctrl-Down

Jump to the end of the unit

Ctrl-Left

Jump to the left with a prefix

Ctrl-Right

Jump to a prefix on the right

Ctrl-Backspace

Delete the previous word

Ctrl-Delete

Delete the next word

Shift-Enter

Run this unit , Select the next unit

Ctrl-Enter

Run this unit

Alt-Enter

Run this unit , Insert a unit below

Ctrl-Shift–-

Split unit Divide according to the line of the cursor

Ctrl-Shift-Subtract

Split unit

Ctrl-S

Save the current NoteBook

Shift

Ignore

Up

Move the cursor up or forward to the previous unit

Down

Move the cursor down or forward to the next unit

Ctrl-/

Comment on the whole line / Uncomment , Only code status is valid

Command mode shortcut key

Shortcut key

effect

Enter

Switch to edit mode

Shift-Enter

Run this unit , Select the next unit

Ctrl-Enter

Run this unit

Alt-Enter

Run this unit , Insert a new cell under it

Y

Unit goes to code state

M

Unit transferred to markdown state

R

Unit transferred to raw state

1

Set up 1 Level title

2

Set up 2 Level title

3

Set up 3 Level title

4

Set up 4 Level title

5

Set up 5 Level title

6

Set up 6 Level title

Up

Select the upper cell

K

Select the upper cell

Down

Select the cell below

J

Select the cell below

Shift-K

Select the upper cell in succession

Shift-J

Continuously select the lower unit

A

Insert a new cell above

B

Insert a new unit below

X

Cut the selected cell

C

Copy the selected cell

Shift-V

Paste to the top unit

V

Paste to the lower unit

Z

Restore the last deleted unit

D,D

Delete the selected cell

Shift-M

Merge selected cells

Ctrl-S

Save the current NoteBook

S

Save the current NoteBook

L

Switch line number

O

Conversion output

Shift-O

Conversion output scrolling

Esc

Close page

Q

Close page

H

Show shortcut help

I,I

interrupt NoteBook kernel

0,0

restart NoteBook kernel

Shift

Ignore

Shift-Space

Scroll up

Space

Scroll down

 Past highlights 

This article is from WeChat official account. - Beginners of machine learning (ai-start-com)

The source and reprint of the original text are detailed in the text , If there is any infringement , Please contact the yunjia_community@tencent.com Delete .

Original publication time : 2020-11-13

Participation of this paper Tencent cloud media sharing plan , You are welcome to join us , share .

版权声明
本文为[Huang Bo's machine learning circle]所创,转载请带上原文链接,感谢

  1. 利用Python爬虫获取招聘网站职位信息
  2. Using Python crawler to obtain job information of recruitment website
  3. Several highly rated Python libraries arrow, jsonpath, psutil and tenacity are recommended
  4. Python装饰器
  5. Python实现LDAP认证
  6. Python decorator
  7. Implementing LDAP authentication with Python
  8. Vscode configures Python development environment!
  9. In Python, how dare you say you can't log module? ️
  10. 我收藏的有关Python的电子书和资料
  11. python 中 lambda的一些tips
  12. python中字典的一些tips
  13. python 用生成器生成斐波那契数列
  14. python脚本转pyc踩了个坑。。。
  15. My collection of e-books and materials about Python
  16. Some tips of lambda in Python
  17. Some tips of dictionary in Python
  18. Using Python generator to generate Fibonacci sequence
  19. The conversion of Python script to PyC stepped on a pit...
  20. Python游戏开发,pygame模块,Python实现扫雷小游戏
  21. Python game development, pyGame module, python implementation of minesweeping games
  22. Python实用工具,email模块,Python实现邮件远程控制自己电脑
  23. Python utility, email module, python realizes mail remote control of its own computer
  24. 毫无头绪的自学Python,你可能连门槛都摸不到!【最佳学习路线】
  25. Python读取二进制文件代码方法解析
  26. Python字典的实现原理
  27. Without a clue, you may not even touch the threshold【 Best learning route]
  28. Parsing method of Python reading binary file code
  29. Implementation principle of Python dictionary
  30. You must know the function of pandas to parse JSON data - JSON_ normalize()
  31. Python实用案例,私人定制,Python自动化生成爱豆专属2021日历
  32. Python practical case, private customization, python automatic generation of Adu exclusive 2021 calendar
  33. 《Python实例》震惊了,用Python这么简单实现了聊天系统的脏话,广告检测
  34. "Python instance" was shocked and realized the dirty words and advertisement detection of the chat system in Python
  35. Convolutional neural network processing sequence for Python deep learning
  36. Python data structure and algorithm (1) -- enum type enum
  37. 超全大厂算法岗百问百答(推荐系统/机器学习/深度学习/C++/Spark/python)
  38. 【Python进阶】你真的明白NumPy中的ndarray吗?
  39. All questions and answers for algorithm posts of super large factories (recommended system / machine learning / deep learning / C + + / spark / Python)
  40. [advanced Python] do you really understand ndarray in numpy?
  41. 【Python进阶】Python进阶专栏栏主自述:不忘初心,砥砺前行
  42. [advanced Python] Python advanced column main readme: never forget the original intention and forge ahead
  43. python垃圾回收和缓存管理
  44. java调用Python程序
  45. java调用Python程序
  46. Python常用函数有哪些?Python基础入门课程
  47. Python garbage collection and cache management
  48. Java calling Python program
  49. Java calling Python program
  50. What functions are commonly used in Python? Introduction to Python Basics
  51. Python basic knowledge
  52. Anaconda5.2 安装 Python 库(MySQLdb)的方法
  53. Python实现对脑电数据情绪分析
  54. Anaconda 5.2 method of installing Python Library (mysqldb)
  55. Python implements emotion analysis of EEG data
  56. Master some advanced usage of Python in 30 seconds, which makes others envy it
  57. python爬取百度图片并对图片做一系列处理
  58. Python crawls Baidu pictures and does a series of processing on them
  59. python链接mysql数据库
  60. Python link MySQL database