LeetCode | 0508. 出现次数最多的子树元素和【Python】

Wonz 2021-01-20 22:14:10
Python github def a tree


Problem

LeetCode

Given the root of a tree, you are asked to find the most frequent subtree sum. The subtree sum of a node is defined as the sum of all the node values formed by the subtree rooted at that node (including the node itself). So what is the most frequent subtree sum value? If there is a tie, return all the values with the highest frequency in any order.

Examples 1 Input:

 5
/ \
2 -3

return [2, -3, 4], since all the values happen only once, return all of them in any order.

Examples 2 Input:

 5
/ \
2 -5

return [2], since 2 happens twice, however -5 only occur once.

Note: You may assume the sum of values in any subtree is in the range of 32-bit signed integer.

问题

力扣

给你一个二叉树的根结点,请你找出出现次数最多的子树元素和。一个结点的「子树元素和」定义为以该结点为根的二叉树上所有结点的元素之和(包括结点本身)。

你需要返回出现次数最多的子树元素和。如果有多个元素出现的次数相同,返回所有出现次数最多的子树元素和(不限顺序)。

示例 1:

输入:

 5
/ \
2 -3

返回 [2, -3, 4],所有的值均只出现一次,以任意顺序返回所有值。

示例 2: 输入:

 5
/ \
2 -5

返回 [2],只有 2 出现两次,-5 只出现 1 次。

提示: 假设任意子树元素和均可以用 32 位有符号整数表示。

思路

DFS

先思考每一个节点需要做的事:该节点值与左右子树的所有节点值相加。
同时,要记录次数。
再遍历子树元素和,取出次数最多的子树元素和。

Python3 代码

# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution:
def findFrequentTreeSum(self, root: TreeNode) -> List[int]:
import collections
res_dic = collections.defaultdict(int)
 # 计算子树元素和
def dfs(node):
 # 递归边界
if not node:
return 0
tmp_sum = dfs(node.left) + node.val + dfs(node.right)
res_dic[tmp_sum] += 1
return tmp_sum
if not root:
return []
dfs(root)
max_cnt = 0
for cnt in res_dic.values():
max_cnt = max(max_cnt, cnt)
return [key for key, cnt in res_dic.items() if cnt == max_cnt]

GitHub 链接

Python

版权声明
本文为[Wonz]所创,转载请带上原文链接,感谢
https://my.oschina.net/wonz/blog/4916947

  1. 利用Python爬虫获取招聘网站职位信息
  2. Using Python crawler to obtain job information of recruitment website
  3. Several highly rated Python libraries arrow, jsonpath, psutil and tenacity are recommended
  4. Python装饰器
  5. Python实现LDAP认证
  6. Python decorator
  7. Implementing LDAP authentication with Python
  8. Vscode configures Python development environment!
  9. In Python, how dare you say you can't log module? ️
  10. 我收藏的有关Python的电子书和资料
  11. python 中 lambda的一些tips
  12. python中字典的一些tips
  13. python 用生成器生成斐波那契数列
  14. python脚本转pyc踩了个坑。。。
  15. My collection of e-books and materials about Python
  16. Some tips of lambda in Python
  17. Some tips of dictionary in Python
  18. Using Python generator to generate Fibonacci sequence
  19. The conversion of Python script to PyC stepped on a pit...
  20. Python游戏开发,pygame模块,Python实现扫雷小游戏
  21. Python game development, pyGame module, python implementation of minesweeping games
  22. Python实用工具,email模块,Python实现邮件远程控制自己电脑
  23. Python utility, email module, python realizes mail remote control of its own computer
  24. 毫无头绪的自学Python,你可能连门槛都摸不到!【最佳学习路线】
  25. Python读取二进制文件代码方法解析
  26. Python字典的实现原理
  27. Without a clue, you may not even touch the threshold【 Best learning route]
  28. Parsing method of Python reading binary file code
  29. Implementation principle of Python dictionary
  30. You must know the function of pandas to parse JSON data - JSON_ normalize()
  31. Python实用案例,私人定制,Python自动化生成爱豆专属2021日历
  32. Python practical case, private customization, python automatic generation of Adu exclusive 2021 calendar
  33. 《Python实例》震惊了,用Python这么简单实现了聊天系统的脏话,广告检测
  34. "Python instance" was shocked and realized the dirty words and advertisement detection of the chat system in Python
  35. Convolutional neural network processing sequence for Python deep learning
  36. Python data structure and algorithm (1) -- enum type enum
  37. 超全大厂算法岗百问百答(推荐系统/机器学习/深度学习/C++/Spark/python)
  38. 【Python进阶】你真的明白NumPy中的ndarray吗?
  39. All questions and answers for algorithm posts of super large factories (recommended system / machine learning / deep learning / C + + / spark / Python)
  40. [advanced Python] do you really understand ndarray in numpy?
  41. 【Python进阶】Python进阶专栏栏主自述:不忘初心,砥砺前行
  42. [advanced Python] Python advanced column main readme: never forget the original intention and forge ahead
  43. python垃圾回收和缓存管理
  44. java调用Python程序
  45. java调用Python程序
  46. Python常用函数有哪些?Python基础入门课程
  47. Python garbage collection and cache management
  48. Java calling Python program
  49. Java calling Python program
  50. What functions are commonly used in Python? Introduction to Python Basics
  51. Python basic knowledge
  52. Anaconda5.2 安装 Python 库(MySQLdb)的方法
  53. Python实现对脑电数据情绪分析
  54. Anaconda 5.2 method of installing Python Library (mysqldb)
  55. Python implements emotion analysis of EEG data
  56. Master some advanced usage of Python in 30 seconds, which makes others envy it
  57. python爬取百度图片并对图片做一系列处理
  58. Python crawls Baidu pictures and does a series of processing on them
  59. python链接mysql数据库
  60. Python link MySQL database