Python 上的可视化库——PyG2Plot

hustcc 2021-01-21 09:30:26
Python 可视化 可视 pyg2plot pyg


G2 是蚂蚁金服开源一个基于图形语法,面向数据分析的统计图表引擎。G2Plot 是在 G2 基础上,屏蔽复杂概念的前提下,保留 G2 强大图形能力,封装出业务上常用的统计图表库。

G2Plot 是一个基于配置、体验优雅、面向数据分析的统计图表库,帮助开发者以最小成本绘制高质量统计图表。

那么对于很多 Python 语言环境的同学,如何使用 G2Plot 在进行数据分析之后的可视化呢?也就是
如何将 G2Plot 和 Python 结合起来?这里给出的就是基于 G2Plot 封装出 PyG2Plot,欢迎帮我充一下 Star。
**

如何使用

$ pip install pyg2plot

主要有 2 种使用方式(能力扩充中,欢迎提 issue)

1. 渲染出完整的 HTML

from pyg2plot import Plot
line = Plot("Line")
line.set_options({
"data": [
{ "year": "1991", "value": 3 },
{ "year": "1992", "value": 4 },
{ "year": "1993", "value": 3.5 },
{ "year": "1994", "value": 5 },
{ "year": "1995", "value": 4.9 },
{ "year": "1996", "value": 6 },
{ "year": "1997", "value": 7 },
{ "year": "1998", "value": 9 },
{ "year": "1999", "value": 13 },
],
"xField": "year",
"yField": "value",
})
# 1. render html file named plot.html
line.render("plot.html")
# 2. render html string
line.render_html()

这种情况可以用于:

  • 服务端 html 直出的场景
  • 生成可交互可视化分享
  • Excel 等工具嵌入的场景

2. 在 Jupyter notebook 中预览

from pyg2plot import Plot
line = Plot("Line")
line.set_options({
"height": 400, # set a default height in jupyter preview
"data": [
{ "year": "1991", "value": 3 },
{ "year": "1992", "value": 4 },
{ "year": "1993", "value": 3.5 },
{ "year": "1994", "value": 5 },
{ "year": "1995", "value": 4.9 },
{ "year": "1996", "value": 6 },
{ "year": "1997", "value": 7 },
{ "year": "1998", "value": 9 },
{ "year": "1999", "value": 13 },
],
"xField": "year",
"yField": "value",
})
line.render_notebook()

在我们做数据分析教程的过程中,可以将我们的数据使用 PyG2Plot 进行可视化并预览出来,十分方便!
image.png

开发原理

PyG2Plot 原理其实非常简单,其中借鉴了 pyecharts 的实现,但是因为蚂蚁金服的 G2Plot 完全基于可视分析理论的配置式结构,所以封装上比 pyecharts 简洁非常非常多。

基本的原理,就是通过 Python 语法提供 API,然后再调用 render 的时候,生成最终的 G2Plot HTML 文本,而针对不同的环境,生成的 HTML 稍有区别。

所以核心文件是:

  • plot.py: 提供了 PyG2Plot 的几乎全部 API
  • engine.py:提供了渲染 HTML 的能力,其实是基于 jinjia2 这个模板引擎实现的,基本内容很少
  • templates:提供了所有的 jinjia2 模板文件,对于模板怎么用,jinjia2 的文档是非常非常详细的

使用文档

PyG2Plot 提供的 API 非常简单,使用上:

# 1. import
from pyg2plot import Plot
# 2. use a plot
line = Plot("Line")
# 3. set_options use G2Plot
line.set_options({ data, ... })
# 4. render
line.render_notebook()

而这其中 set_options API 的参数,是完全沿用 G2Plot 的配置文档,支持所有的图表、功能、特性,概念和结构上不作任何修改。
image.png

最后

欢迎给个 Star

最后有任何的特性支持和 bug 反馈,欢迎 issue 或者 PR。

版权声明
本文为[hustcc]所创,转载请带上原文链接,感谢
https://segmentfault.com/a/1190000039044356

  1. Python 爬虫进阶 - 前后端分离有什么了不起,过程超详细!
  2. 【python】使用pip提示ModuleNotFoundError
  3. 【python】虚拟环境搭建
  4. Advanced test | Python written test questions
  5. Fire! Open source Python ticket grabbing artifact, come home to see this wave of New Year!
  6. Python crawler advanced - before and after the end of the separation of what great, super detailed process!
  7. [Python] prompt modulenotfounderror with PIP
  8. Building a virtual environment
  9. Serverless 架构下用 Python 轻松搞定图像分类和预测
  10. Easy image classification and prediction with Python under serverless architecture
  11. python协程爬取某网站的老赖数据
  12. Python coroutine crawls Laolai data of a website
  13. 使用Python分析姿态估计数据集COCO的教程
  14. Using Python to analyze the data set coco of attitude estimation
  15. win环境 python3 flask 上手整理 环境搭建(一)
  16. Getting started with win environment python3 flash
  17. Python实现一个论文下载器,赶紧收藏
  18. win环境 python3 flask 上手整理 快速上手-基础操作(二)
  19. Python 中常见的配置文件写法
  20. Python to achieve a paper Downloader, quickly collect
  21. Python批量 png转ico
  22. 使用line_profiler对python代码性能进行评估优化
  23. 使用line_profiler对python代码性能进行评估优化
  24. Getting started with Python 3 flash in win environment
  25. Common ways to write configuration files in Python
  26. Python会在2021年死去吗? Python 3.9最终版本的回顾
  27. Python batch PNG to ICO
  28. Using line_ Profiler evaluates and optimizes the performance of Python code
  29. Using line_ Profiler evaluates and optimizes the performance of Python code
  30. Will Python die in 2021? A review of the final version of Python 3.9
  31. Python3 SMTP send mail
  32. Understanding closures in Python: getting started with closures
  33. Python日志实践
  34. Python logging practice
  35. [python opencv 计算机视觉零基础到实战] 十、图片效果毛玻璃
  36. [python opencv 计算机视觉零基础到实战] 九、模糊
  37. 10. Picture effect ground glass
  38. [Python opencv computer vision zero basis to actual combat] 9. Fuzzy
  39. 使用line_profiler對python程式碼效能進行評估優化
  40. Using line_ Profiler to evaluate and optimize the performance of Python code
  41. LeetCode | 0508. 出现次数最多的子树元素和【Python】
  42. Leetcode | 0508
  43. LeetCode | 0530. 二叉搜索树的最小绝对差【Python】
  44. LeetCode | 0515. 在每个树行中找最大值【Python】
  45. Leetcode | 0530. Minimum absolute difference of binary search tree [Python]
  46. Leetcode | 0515. Find the maximum value in each tree row [Python]
  47. 我来记笔记啦-搭建python虚拟环境
  48. Let me take notes - building a python virtual environment
  49. LeetCode | 0513. 找树左下角的值【Python】
  50. Leetcode | 0513. Find the value in the lower left corner of the tree [Python]
  51. Python OpenCV 泛洪填充,取经之旅第 21 天
  52. Python opencv flood fill, day 21
  53. Python爬虫自学系列(二)
  54. Python crawler self study series (2)
  55. 【python】身份证号码有效性检验
  56. [Python] validity test of ID number
  57. Python ORM - pymysql&sqlalchemy
  58. Python ORM - pymysql&sqlalchemy
  59. centos7 安装python3.8
  60. centos7 安装python3.8