目录 | 上一节 (1.7 函数) | 下一节 (2.2 容器)

2.1 数据类型和数据结构

本节以元组和字典为代表介绍数据结构。

原始数据类型

Python 有一些原始数据类型:

  • 整数
  • 浮点数
  • 字符串(文本)

空类型

email_address = None

None 常用作可选值或缺失值的占位符。它在条件语句中计算为 False

if email_address:
send_email(email_address, msg)

数据结构

实际的程序具有更复杂的数据。例如,关于股票的持有信息:

100 shares of GOOG at $490.10

这是一个包含三个部分的“对象”:

  • 股票的名称或符号("GOOG",字符串)
  • 股份数目(100,整数)
  • 价格(490.10,浮点数)

元组

元组是分组在一起的值的集合。

示例:

s = ('GOOG', 100, 490.1)

有时候会在语法上省略 ()

s = 'GOOG', 100, 490.1

特殊情况(0 元组,1 元组)。

t = () # An empty tuple
w = ('GOOG', ) # A 1-item tuple

元组一般用来表示简单的记录或结构。

通常,它是由多个部分组成的单个对象。这有一个很好的类比:元组就像数据库表中的一行。

元组的内容是有序的(类似于数组)。

s = ('GOOG', 100, 490.1)
name = s[0] # 'GOOG'
shares = s[1] # 100
price = s[2] # 490.1

但是,元组的内容无法修改。

>>> s[1] = 75
TypeError: object does not support item assignment

你可以基于当前元组创建一个新元组。

s = (s[0], 75, s[2])

元组打包

元组更多的是把相关的项打包到一个实体(entity)中。

s = ('GOOG', 100, 490.1)

然后,该元组很容易作为单个对象传递给程序的其它部分。

元组拆包

要在其它地方使用元组,可以把元组的各部分拆包为变量。

name, shares, price = s
print('Cost', shares * price)

左侧变量的数目必须与元组的结构匹配。

name, shares = s # ERROR
Traceback (most recent call last):
...
ValueError: too many values to unpack

元组与列表

元组看起来像只读列表。但是,元组最常用于由多个部分组成的单项。列表通常是类型相同的项的集合,

record = ('GOOG', 100, 490.1) # A tuple representing a record in a portfolio
symbols = [ 'GOOG', 'AAPL', 'IBM' ] # A List representing three stock symbols

字典

字典是键到值的映射。有时,字典也称为哈希表(hash table)或关联数组(associative array)。键用作访问值的索引。

s = {
'name': 'GOOG',
'shares': 100,
'price': 490.1
}

常见操作

要从字典中获取值,请使用键名。

>>> print(s['name'], s['shares'])
GOOG 100
>>> s['price']
490.10
>>>

要添加或修改值,请使用键名进行分配。

>>> s['shares'] = 75
>>> s['date'] = '6/6/2007'
>>>

要删除值,请使用 del 语句。

>>> del s['date']
>>>

为什么使用字典?

当存在很多不同的值并且可能会修改或操作这些值时,字典很有用。字典使代码更具可读性。

s['price']
# vs
s[2]

练习

在上次的几个练习中,编写了一个取数据文件 Data/portfolio.csv 的程序 。使用 csv 模块,可以轻松地逐行读取文件。

>>> import csv
>>> f = open('Data/portfolio.csv')
>>> rows = csv.reader(f)
>>> next(rows)
['name', 'shares', 'price']
>>> row = next(rows)
>>> row
['AA', '100', '32.20']
>>>

尽管读取文件很容易,但是与读取数据相比,通常使用数据做更多的事情。例如,也许想存储它并对其执行一些计算。不幸的是,原始的数据“行”并不能这样做。例如,即使是简单的数学计算也不行。

>>> row = ['AA', '100', '32.20']
>>> cost = row[1] * row[2]
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: can't multiply sequence by non-int of type 'str'
>>>

要执行更多的操作,通常需要以某种方式解释原始数据,并将其转换为更有用的对象类型,以便以后处理。有两种简单的方式可以选择:元组或者字典。

练习 2.1:元组

在交互式提示符下,创建以下代表上一行的元组,但数字列要转换为恰当的数字。

>>> t = (row[0], int(row[1]), float(row[2]))
>>> t
('AA', 100, 32.2)
>>>

使用这种方式,现在可以使用股份数目乘以价格来计算总价,

>>> cost = t[1] * t[2]
>>> cost
3220.0000000000005
>>>

在 Python 中,数学没用了吗?结果为什么是 3220.0000000000005?

这是计算机上浮点硬件的产物,只能在二进制(而不是十进制)中准确表示小数。即使是涉及十进制小数的简单计算,也会引入小的误差。这很正常,如果你之前没有见过,可能会有点惊讶。

虽然在所有使用浮点小数的编程语言中都会发生这种情况,但是打印的时候可以把它隐藏,例如:

>>> print(f'{cost:0.2f}')
3220.00
>>>

元组是只读的。可以通过尝试把股份数目改为 75 来验证这点。

>>> t[1] = 75
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: 'tuple' object does not support item assignment
>>>

尽管无法更改元组的内容,但是始终可以创建一个全新的元组来替换旧的元组。

>>> t = (t[0], 75, t[2])
>>> t
('AA', 75, 32.2)
>>>

每当像这样重新分配现有变量名时,旧值就会被丢弃。虽然上面的赋值可能看起来像在修改元组,但实际上是在创建一个新的元组,并且将旧的元组丢弃。

元组通常用于将值打包或拆包到变量中。请尝试以下操作:

>>> name, shares, price = t
>>> name
'AA'
>>> shares
75
>>> price
32.2
>>>

取上面的变量并将其打包回元组中:

>>> t = (name, 2*shares, price)
>>> t
('AA', 150, 32.2)
>>>

练习 2.2:把字典当作数据结构

可以创建字典来替代元组。

>>> d = {
'name' : row[0],
'shares' : int(row[1]),
'price' : float(row[2])
}
>>> d
{'name': 'AA', 'shares': 100, 'price': 32.2 }
>>>

计算持有的总价:

>>> cost = d['shares'] * d['price']
>>> cost
3220.0000000000005
>>>

将此示例与上面涉及元组的相同的计算进行比较,将股份数目修改为 75。

>>> d['shares'] = 75
>>> d
{'name': 'AA', 'shares': 75, 'price': 32.2 }
>>>

与元组不同,字典可以自由修改。添加一些属性:

>>> d['date'] = (6, 11, 2007)
>>> d['account'] = 12345
>>> d
{'name': 'AA', 'shares': 75, 'price':32.2, 'date': (6, 11, 2007), 'account': 12345}
>>>

练习 2.3: 字典的其它操作

如果将一个字典转换为列表,则将获得其所有的键:

>>> list(d)
['name', 'shares', 'price', 'date', 'account']
>>>

类似地,如果使用 for 语句对字典进行迭代,则将获得其所有的键。

>>> for k in d:
print('k =', k) k = name
k = shares
k = price
k = date
k = account
>>>

尝试使用这个同时执行查找的变体:

>>> for k in d:
print(k, '=', d[k]) name = AA
shares = 75
price = 32.2
date = (6, 11, 2007)
account = 12345
>>>

也可以使用 keys() 方法获得所有的键:

>>> keys = d.keys()
>>> keys
dict_keys(['name', 'shares', 'price', 'date', 'account'])
>>>

在这里,keys() 稍微有点不同,它返回的是一个 dict_keys 对象。

这是对原始字典的覆盖,它始终提供当前字典的键——即使字典改变了。例如,试试一下操作:

>>> del d['account']
>>> keys
dict_keys(['name', 'shares', 'price', 'date'])
>>>

请注意,尽管没有再次调用 d.keys() ,但键'account' 消失了。

一个更优雅地一起使用键和值的方式是使用 items() 方法。这可以获得键值组成的元组 (key, value)

>>> items = d.items()
>>> items
dict_items([('name', 'AA'), ('shares', 75), ('price', 32.2), ('date', (6, 11, 2007))])
>>> for k, v in d.items():
print(k, '=', v) name = AA
shares = 75
price = 32.2
date = (6, 11, 2007)
>>>

如果有类似于 items 的元组,那么可以使用 dict() 函数创建一个字典。请尝试以下操作:

>>> items
dict_items([('name', 'AA'), ('shares', 75), ('price', 32.2), ('date', (6, 11, 2007))])
>>> d = dict(items)
>>> d
{'name': 'AA', 'shares': 75, 'price':32.2, 'date': (6, 11, 2007)}
>>>

目录 | 上一节 (1.7 函数) | 下一节 (2.2 容器)

注:完整翻译见 https://github.com/codists/practical-python-zh

翻译:《实用的Python编程》02_01_Datatypes的更多相关文章

  1. 翻译&quot;Python编程无师自通——专业程序员的养成&quot;

    这本书在 畅销Python编程类入门书,美国亚马逊Kindle编程类排行榜榜一. 开始初学python,也有不少书了,不想在白花钱(买了就放那里不看了),看一个英文文档的原著,准备每天翻译一点,放到b ...

  2. Python黑帽编程2.1 Python编程哲学

    Python黑帽编程2.1  Python编程哲学 本节的内容有些趣味性,涉及到很多人为什么会选择Python,为什么会喜欢这门语言.我带大家膜拜下Python作者的Python之禅,然后再来了解下P ...

  3. Python 编程规范-----转载

    Python编程规范及性能优化 Ptyhon编程规范 编码 所有的 Python 脚本文件都应在文件头标上 # -*- coding:utf-8 -*- .设置编辑器,默认保存为 utf-8 格式. ...

  4. 学习Python编程的11个精品资源

    本文由 伯乐在线 - atupal 翻译自 Alex Ivanovs.欢迎加入技术翻译小组.转载请参见文章末尾处的要求. 用 Python 写代码并不难,事实上,它一直以来都是被声称为最容易学习的编程 ...

  5. 关于Python编程的一些问答

    关于Python编程的一些问答 导语 大约1个月前,oschina.net和华章图书一起合作做了一个活动:OSC第51期高手问答--聊聊python那些事,来推广我参与撰写的书<编写高质量代码: ...

  6. python经典书记必读:Python编程快速上手 让繁琐工作自动化

    所属网站分类: 资源下载 > python电子书 作者:熊猫烧香 链接:http://www.pythonheidong.com/blog/article/69/ 来源:python黑洞网,专注 ...

  7. CS231n课程笔记翻译1:Python Numpy教程

    译者注:本文智能单元首发,翻译自斯坦福CS231n课程笔记Python Numpy Tutorial,由课程教师Andrej Karpathy授权进行翻译.本篇教程由杜客翻译完成,Flood Sung ...

  8. 学习 Python 编程的 19 个资源 (转)

    学习 Python 编程的 19 个资源 2018-01-07 数据与算法之美 编译:wzhvictor,英文:codecondo segmentfault.com/a/119000000418731 ...

  9. Python学习手册之 Python 之禅、Python 编程规范和函数参数

    在上一篇文章中,我们介绍了 Python 的正则表达式使用示例,现在我们介绍 Python 之禅. Python 编程规范和函数参数.查看上一篇文章请点击:https://www.cnblogs.co ...

  10. Python编程笔记二进制、字符编码、数据类型

    Python编程笔记二进制.字符编码.数据类型 一.二进制 bin() 在python中可以用bin()内置函数获取一个十进制的数的二进制 计算机容量单位 8bit = 1 bytes 字节,最小的存 ...

随机推荐

  1. select元素中设置padding效果

    更新2016-9-17:这个bug是在mac os上的发生,在window系统中不存在这个问题! 给select元素增加:padding-left:20px;但是未生效,如下图所示: 在select上 ...

  2. Redis和Memcached对比

    Redis和Memcached对比 这两年 Redis火得可以,Redis也常常被当作 Memcached的挑战者被提到桌面上来.关于Redis与Memcached的比较更是比比皆是.然而,Redis ...

  3. BZOJ 1143 [CTSC2008]祭祀river(二分图匹配)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1143 [题目大意] 给出一张有向图,问最大不连通点集,连通具有传递性 [题解] 我们将 ...

  4. 希腊字母、拉丁字母、Markdown、拼写与读音中英对照表

    大写 小写 中文名 英文 大写Markdown 小写Markdown 意义 阿尔法 Alpha A \alpha 角度.系数.角加速度.第一个.电离度.转化率 贝塔/毕塔 Beta B \beta 磁 ...

  5. jackson对日期的处理(序列化与反序列化)

    https://blog.csdn.net/cover1231988/article/details/76021478

  6. mac相关功能

    打开和关闭索引功能 打开:sudo mdutil -a -i on 关闭:sudo mdutil -a -i off 关闭后则无法搜

  7. SpringCloud第一弹(入门)

    使用IDEA建立SpringBoot多模块工程不爽啊~算了凑合用吧. 第一步.建立一个POM工程 ..Next ..一路next即可,中间啥也不选 第二步.建立Eureka服务器(这个玩意等同于玩Du ...

  8. 让Linux系统开机速度更快的方法

    进行 Linux 内核与固件开发的时候,往往需要多次的重启,会浪费大把的时间. 在所有我拥有或使用过的电脑中,启动最快的那台是 20 世纪 80 年代的电脑.在你把手从电源键移到键盘上的时候,BASI ...

  9. 多表关联解决数据在MVC显示

    由于子表的某些字段是父表的外键,正常情况之下,显示的只是一个键值.如下图的Highlight列,如果这样显示,确实不友好. 如果是在创建或是编辑的模式之下,我们可以使用下拉菜单来解决,如<Htm ...

  10. Python入门与基本概念

    简介:本学习笔记基于ubuntu,Ubuntu已经内置了python2.7,python2.7既包含老版本的属性,有含有新版本的一些特性,用于对3.x版本的过渡,可以拿来入门学习,入门之后可以再学习p ...