翻译:《实用的Python编程》02_02_Containers

codists 2021-02-22 11:21:56
编程 Python 翻译 实用 02_02_containers


目录 | 上一节 (2.1 数据类型) | 下一节 (2.3 格式化)

2.2 容器

本节讨论列表(list),字典(dict)和集合(set)。

概述

通常,程序必须处理许多对象。

  • 股票的投资组合
  • 股票价格表

这里有三种主要的选择(译注:数据结构)可以使用:

  • 列表。有序的数据。
  • 字典。无序的数据。
  • 集合。互异且无序的数据。

把列表当作容器

当数据顺序很重要时,请使用列表。记住,列表可以存储任何类型的对象。例如,包含元组的列表:

portfolio = [
('GOOG', 100, 490.1),
('IBM', 50, 91.3),
('CAT', 150, 83.44)
]
portfolio[0] # ('GOOG', 100, 490.1)
portfolio[2] # ('CAT', 150, 83.44)

列表构建

从零开始构建列表。

records = [] # Initial empty list
# Use .append() to add more items
records.append(('GOOG', 100, 490.10))
records.append(('IBM', 50, 91.3))
...

从文件读取记录的示例:

records = [] # Initial empty list
with open('Data/portfolio.csv', 'rt') as f:
next(f) # Skip header
for line in f:
row = line.split(',')
records.append((row[0], int(row[1]), float(row[2])))

把字典当作容器

如果要快速随机查找(通过键名),那么字典很有用。例如,股票价格字典:

prices = {
'GOOG': 513.25,
'CAT': 87.22,
'IBM': 93.37,
'MSFT': 44.12
}

以下是一些简单的查找:

>>> prices['IBM']
93.37
>>> prices['GOOG']
513.25
>>>

字典构建

从零开始构建字典的示例:

prices = {} # Initial empty dict
# Insert new items
prices['GOOG'] = 513.25
prices['CAT'] = 87.22
prices['IBM'] = 93.37

从文件内容填充字典的示例:

prices = {} # Initial empty dict
with open('Data/prices.csv', 'rt') as f:
for line in f:
row = line.split(',')
prices[row[0]] = float(row[1])

注意:如果是在 Data/prices.csv 文件上尝试此操作,会发现几乎可以正常工作——但是,在末尾有一个空行导致程序崩溃了。需要找出一些方法来修改代码以解决此问题(参见练习 2.6)。

字典查找

测试键是否存在:

if key in d:
# YES
else:
# NO

可以查找可能不存在的值,并在值不存在的情况下提供默认值。

name = d.get(key, default)

示例:

>>> prices.get('IBM', 0.0)
93.37
>>> prices.get('SCOX', 0.0)
0.0
>>>

组合键

在 Python 中,几乎任何类型的值都可以用作字典的键。字典的键必须是不可变类型。例如,元组:

holidays = {
(1, 1) : 'New Years',
(3, 14) : 'Pi day',
(9, 13) : "Programmer's day",
}

然后访问:

>>> holidays[3, 14]
'Pi day'
>>>

列表,集合或者其它字典都不能用作字典的键,因为列表和字典(译注:集合也是使用哈希技术实现的)是可变的。

集合

集合是互异且无序的数据。

tech_stocks = { 'IBM','AAPL','MSFT' }
# Alternative syntax
tech_stocks = set(['IBM', 'AAPL', 'MSFT'])

集合对于成员关系测试很有用。

>>> tech_stocks
set(['AAPL', 'IBM', 'MSFT'])
>>> 'IBM' in tech_stocks
True
>>> 'FB' in tech_stocks
False
>>>

集合对于消除重复也很有用。

names = ['IBM', 'AAPL', 'GOOG', 'IBM', 'GOOG', 'YHOO']
unique = set(names)
# unique = set(['IBM', 'AAPL','GOOG','YHOO'])

其它集合操作:

names.add('CAT') # Add an item
names.remove('YHOO') # Remove an item
s1 | s2 # Set union
s1 & s2 # Set intersection
s1 - s2 # Set difference

练习

在这些练习中,你开始构建的程序是本课程剩余部分使用的主要程序之一。请在 Work/report.py 文件中工作。

练习 2.4:包含元组的列表

Data/portfolio.csv 文件包含投资组合中的股票列表。在 练习 1.30 中,你编写了一个读取该文件并执行简单计算的 portfolio_cost(filename) 函数。

代码看起来应该像下面这样:

# pcost.py
import csv
def portfolio_cost(filename):
'''Computes the total cost (shares*price) of a portfolio file'''
total_cost = 0.0
with open(filename, 'rt') as f:
rows = csv.reader(f)
headers = next(rows)
for row in rows:
nshares = int(row[1])
price = float(row[2])
total_cost += nshares * price
return total_cost

请使用这些代码作为指导,创建一个新文件 report.py 。在 report.py 文件中,定义 read_portfolio(filename) 函数,该函数打开 Data/portfolio.csv 文件并将其读入到包含元组的列表中。为此,你需要对上面的代码做一些小修改。

首先,创建一个最初设为空列表的变量,而不是定义 total_cost = 0。例如:

portfolio = []

接着,把每一行准确地存储到元组中(就像在上次的练习中做的那样),然后把元组追加到列表中,而不是合计总的费用。

for row in rows:
holding = (row[0], int(row[1]), float(row[2]))
portfolio.append(holding)

最后,返回得到的portfolio 列表。

请交互式地试验函数(提醒,要执行此操作,首先需要在解释器运行 report.py 程序)。

提示:当在终端执行文件的时候,请使用 -i 参数。

>>> portfolio = read_portfolio('Data/portfolio.csv')
>>> portfolio
[('AA', 100, 32.2), ('IBM', 50, 91.1), ('CAT', 150, 83.44), ('MSFT', 200, 51.23),
('GE', 95, 40.37), ('MSFT', 50, 65.1), ('IBM', 100, 70.44)]
>>>
>>> portfolio[0]
('AA', 100, 32.2)
>>> portfolio[1]
('IBM', 50, 91.1)
>>> portfolio[1][1]
50
>>> total = 0.0
>>> for s in portfolio:
total += s[1] * s[2]
>>> print(total)
44671.15
>>>

创建的包含元组的列表非常类似于二维(2-D)数组。例如,使用诸如 portfolio[row][column]rowcolumn 是整数)的查找来访问特定的列和行。

也就是说,可以使用像下面这样的语句重写最后的 for 循环:

>>> total = 0.0
>>> for name, shares, price in portfolio:
total += shares*price
>>> print(total)
44671.15
>>>

练习 2.5:包含字典的列表

使用字典(而不是元组)修改在练习 2.4 中编写的函数来表示投资组合中的股票。在字典中,使用字段名 "name", "shares" 和 "price" 来表示输入文件中的不同列。

以与练习 2.4 中相同的方式试验这个新的函数。

>>> portfolio = read_portfolio('Data/portfolio.csv')
>>> portfolio
[{'name': 'AA', 'shares': 100, 'price': 32.2}, {'name': 'IBM', 'shares': 50, 'price': 91.1},
{'name': 'CAT', 'shares': 150, 'price': 83.44}, {'name': 'MSFT', 'shares': 200, 'price': 51.23},
{'name': 'GE', 'shares': 95, 'price': 40.37}, {'name': 'MSFT', 'shares': 50, 'price': 65.1},
{'name': 'IBM', 'shares': 100, 'price': 70.44}]
>>> portfolio[0]
{'name': 'AA', 'shares': 100, 'price': 32.2}
>>> portfolio[1]
{'name': 'IBM', 'shares': 50, 'price': 91.1}
>>> portfolio[1]['shares']
50
>>> total = 0.0
>>> for s in portfolio:
total += s['shares']*s['price']
>>> print(total)
44671.15
>>>

在这里可以看到,每个条目的不同字段是通过键名来访问的,而不是数字类型的列号。这通常是首选方式,因为这样得到的代码在以后易于阅读。

查看大型的字典或者列表可能会很混乱。要使调试的输出变得整洁,可以考虑使用 pprint() 函数。

>>> from pprint import pprint
>>> pprint(portfolio)
[{'name': 'AA', 'price': 32.2, 'shares': 100},
{'name': 'IBM', 'price': 91.1, 'shares': 50},
{'name': 'CAT', 'price': 83.44, 'shares': 150},
{'name': 'MSFT', 'price': 51.23, 'shares': 200},
{'name': 'GE', 'price': 40.37, 'shares': 95},
{'name': 'MSFT', 'price': 65.1, 'shares': 50},
{'name': 'IBM', 'price': 70.44, 'shares': 100}]
>>>

练习 2.6:把字典当作容器

在使用索引而不是数字查找某元素的地方,字典是一种用来跟踪元素的很有用的方式。在 Python shell 中,尝试使用字典:

>>> prices = { }
>>> prices['IBM'] = 92.45
>>> prices['MSFT'] = 45.12
>>> prices
... look at the result ...
>>> prices['IBM']
92.45
>>> prices['AAPL']
... look at the result ...
>>> 'AAPL' in prices
False
>>>

Data/prices.csv 文件包含一系列带有股票价格的行,看起来像下面这样:

"AA",9.22
"AXP",24.85
"BA",44.85
"BAC",11.27
"C",3.72
...

编写 read_prices(filename)函数将诸如此类的价格集合读取到字典中,字典的键代表股票的名字,字典的值代表股票的价格。

为此,从空字典开始,并且像上面做的那样开始插入值。但是,现在正在从从文件中读取值。

我们将使用该数据结构快速查找给定名称的股票的价格。

这部分需要一些小技巧。首先,确保像之前做的那样使用 csv 模块——无需在这里重复发明轮子。

>>> import csv
>>> f = open('Data/prices.csv', 'r')
>>> rows = csv.reader(f)
>>> for row in rows:
print(row)
['AA', '9.22']
['AXP', '24.85']
...
[]
>>>

另外一个小麻烦是 Data/prices.csv 文件可能有一些空行在里面。注意上面数据的最后一行是一个空列表——意味在那一行没有数据。

这有可能导致你的程序因为异常而终止。酌情使用 tryexcept 语句捕获这些异常。思考:使用 if 语句来防范错误的数据是否会更好?

编写完 read_prices() 函数,请交互式地测试它并确保其正常工作:

>>> prices = read_prices('Data/prices.csv')
>>> prices['IBM']
106.28
>>> prices['MSFT']
20.89
>>>

练习 2.7:看看你是否可以退休

通过添加一些计算盈亏的语句到 report.py 程序,将所有的工作联系到一起。这些语句应该采用在练习 2.5 中存储股票名称的列表,以及在练习 2.6 中存储股票价格的字典,并计算投资组合的当前值以及盈亏。

目录 | 上一节 (2.1 数据类型) | 下一节 (2.3 格式化)

注:完整翻译见 https://github.com/codists/practical-python-zh

版权声明
本文为[codists]所创,转载请带上原文链接,感谢
https://www.cnblogs.com/codists/p/14425516.html

  1. Detailed usage of urllib in Python 3 (header, proxy, timeout, authentication, exception handling)
  2. python 第三方库paramiko
  3. python 第三方库paramiko
  4. Python third party library paramiko
  5. Python third party library paramiko
  6. 卸载 PyCharm!这才是 Python 小白的最理想的 IDE
  7. 卸载 PyCharm!这才是 Python 小白的最理想的 IDE
  8. Uninstall pycharm! This is the ideal IDE for Python Xiaobai
  9. django学习-27.admin管理后台里:对列表展示页面的数据展示进行相关优化
  10. Uninstall pycharm! This is the ideal IDE for Python Xiaobai
  11. Django learning - 27. Admin management background: optimize the data display of the list display page
  12. python day2
  13. python day2
  14. Python 内存泄漏问题排查
  15. Troubleshooting of Python memory leak
  16. Python 与 excel的简单应用
  17. Simple application of Python and excel
  18. Python 与 excel的简单应用
  19. Simple application of Python and excel
  20. 2.7万 Star!最全面的 Python 设计模式集合
  21. 27000 stars! The most comprehensive collection of Python design patterns
  22. python day3
  23. python day3
  24. Commonly used data operation functions of Python
  25. (数据科学学习手札108)Python+Dash快速web应用开发——静态部件篇(上)
  26. (learning notes of data science 108) Python + dash rapid web application development -- static components (I)
  27. (数据科学学习手札108)Python+Dash快速web应用开发——静态部件篇(上)
  28. (learning notes of data science 108) Python + dash rapid web application development -- static components (I)
  29. [Python] Matplotlib 图表的绘制和美化技巧
  30. Drawing and beautifying skills of [Python] Matplotlib chart
  31. [Python] Matplotlib 图表的绘制和美化技巧
  32. Drawing and beautifying skills of [Python] Matplotlib chart
  33. Virtual environment of Python project
  34. 翻译:《实用的Python编程》02_01_Datatypes
  35. Translation: practical Python Programming 02_ 01_ Datatypes
  36. 翻译:《实用的Python编程》02_01_Datatypes
  37. 翻译:《实用的Python编程》02_01_Datatypes
  38. Translation: practical Python Programming 02_ 01_ Datatypes
  39. Translation: practical Python Programming 02_ 01_ Datatypes
  40. Python 3 入门,看这篇就够了
  41. Python 3 entry, see this is enough
  42. 华为大佬打造的400集Python视频学起来,学完万物皆可爬
  43. 400 episodes of Python video created by Huawei boss
  44. django之csrf_exempt解决跨域请求的问题
  45. CSRF of Django_ Exempt solves the problem of cross domain requests
  46. 1.7 万 Star!一个简单实用的 Python 进度条库
  47. 17000 stars! A simple and practical Python progress bar library
  48. Python爬虫:设置Cookie解决网站拦截并爬取蚂蚁短租
  49. Python crawler: setting cookie to solve website interception and crawling ant short rent
  50. Python-Net编程
  51. Python net programming
  52. 学习Python数学英语基础重要吗?Python教程!
  53. Is it important to learn the basics of math and English in Python!
  54. Python数据分析常用库有哪些?Python学习!
  55. What are the common libraries for Python data analysis? Learn Python!
  56. win 创建python虚拟环境
  57. Creating Python virtual environment with win
  58. In order to automatically collect B station barrage, I developed a tool in Python
  59. 用Python编程语言来实现阿姆斯特朗数的检查
  60. Using python programming language to check Armstrong number