Matplotlib yes Python Drawing library of , It offers a complete set and matlab Similar orders API, It can generate exquisite graphics of publishing quality level ,Matplotlib Make drawing very simple , We'll pass 10
Avenue Python
Programming questions to master the use Matplotlib Library for graphic drawing !
Knowledge point description : Draw a curve .
Problem description : Draw functions in the same picture y = x 2 y=x^2 y=x2, y = l o g e x y=log_ex y=logex as well as y = s i n ( x ) y=sin(x) y=sin(x), Please choose the correct answer from the following options :
A.
import numpy as np
import matplotlib.pyplot as plt
x = np.linspace(0.1, 2 * np.pi, 100)
y_1 = np.square(x)
y_2 = np.log(x)
y_3 = np.sin(x)
fig = plt.figure()
plt.plot(x,y_1)
fig = plt.figure()
plt.plot(x,y_2)
fig = plt.figure()
plt.plot(x,y_3)
plt.show()
B.
import numpy as np
import matplotlib.pyplot as plt
x = np.linspace(0.1, 2 * np.pi, 100)
y_1 = np.square(x)
y_2 = np.log(x)
y_3 = np.sin(x)
fig = plt.figure()
plt.plot(x,y_1)
plt.plot(x,y_2)
plt.plot(x,y_3)
plt.show()
C.
import numpy as np
import matplotlib.pyplot as plt
x = np.linspace(0.1, 2 * np.pi, 100)
y_1 = np.square(x)
y_2 = np.log(x)
y_3 = np.sin(x)
plt.plot(x,y_1, y_2, y_3)
plt.show()
D.
import numpy as np
import matplotlib.pyplot as plt
x = np.linspace(0.1, 2 * np.pi, 100)
y_1 = np.square(x)
y_2 = np.log(x)
y_3 = np.sin(x)
fig = plt.figure()
plt.plot(x,y_1, y_2, y_3)
plt.show()
right key : B
Knowledge point description : Draw a scatter plot .
Problem description : Draw function y = s i n ( x ) y=sin(x) y=sin(x) The points on the , Please choose the correct answer from the following options :
A.
import numpy as np
import matplotlib.pyplot as plt
x = np.linspace(0.1, 2 * np.pi, 50)
y = np.sin(x)
fig = plt.figure()
plt.plot(x, y)
plt.show()
B.
import numpy as np
import matplotlib.pyplot as plt
x = np.linspace(0.1, 2 * np.pi, 50)
y = np.sin(x)
fig = plt.figure()
plt.barh(x, y)
plt.show()
C.
import numpy as np
import matplotlib.pyplot as plt
x = np.linspace(0.1, 2 * np.pi, 50)
y = np.sin(x)
fig = plt.figure()
plt.bar(x, y)
plt.show()
D.
import numpy as np
import matplotlib.pyplot as plt
x = np.linspace(0.1, 2 * np.pi, 50)
y = np.sin(x)
fig = plt.figure()
plt.scatter(x, y)
plt.show()
right key : D
Knowledge point description : Draw a bar graph .
Problem description : Draw multiple sets of bar charts , Compare the sales volume of the corresponding quarter in different years , Please choose the right one from the following :
A.
import numpy as np
import matplotlib.pyplot as plt
data = [[10., 20., 30., 20.],[40., 25., 53., 18.],[6., 22., 52., 19.]]
x = np.arange(4)
colors = ['r', 'g', 'b']
for i in range(len(data)):
plt.bar(x + i * 0.25, data[:i], color = colors[i], width = 0.25)
plt.show()
B.
import numpy as np
import matplotlib.pyplot as plt
data = [[10., 20., 30., 20.],[40., 25., 53., 18.],[6., 22., 52., 19.]]
x = np.arange(4)
colors = ['r', 'g', 'b']
for i in range(len(data)):
plt.plot(x + i * 0.25, data[:i], color = colors[i], width = 0.25)
plt.show()
C.
import numpy as np
import matplotlib.pyplot as plt
data = [[10., 20., 30., 20.],[40., 25., 53., 18.],[6., 22., 52., 19.]]
x = np.arange(4)
colors = ['r', 'g', 'b']
for i in range(len(data)):
plt.bar(x + i * 0.25, data[i], color = colors[i], width = 0.25)
plt.show()
D.
import numpy as np
import matplotlib.pyplot as plt
data = [[10., 20., 30., 20.],[40., 25., 53., 18.],[6., 22., 52., 19.]]
x = np.arange(4)
colors = ['r', 'g', 'b']
for i in range(len(data)):
plt.plot(x + i * 0.25, data[i], color = colors[i], width = 0.25)
plt.show()
right key : C
Knowledge point description : Use a pie chart to compare the relative relationship between quantities .
Problem description : Draw the pie chart , Comparison list [10, 15, 30, 20] The relative relationship between quantities , Please choose the right one from the following :
A.
import matplotlib.pyplot as plt
data = [10, 15, 30, 20]
sum_data = sum(data)
plt.pie(data / sum_data)
plt.show()
B.
import matplotlib.pyplot as plt
data = [10, 15, 30, 20]
plt.pie(sum(data))
plt.show()
C.
import matplotlib.pyplot as plt
data = [10, 15, 30, 20]
plt.pie(range(len(data)), data)
plt.show()
D.
import matplotlib.pyplot as plt
data = [10, 15, 30, 20]
plt.pie(data)
plt.show()
right key : D
Knowledge point description : A histogram is used to represent the probability distribution .
Problem description : Draw the histogram according to the constructed array , Please choose the correct answer from the following options :
A.
import numpy as np
import matplotlib.pyplot as plt
x = np.random.randn(1024)
plt.hist(x, bins = 20)
plt.show()
B.
import numpy as np
import matplotlib.pyplot as plt
x = np.random.randn(1024)
plt.hist(x, bins=x.shape)
plt.show()
C.
import numpy as np
import matplotlib.pyplot as plt
x = np.random.randn(1024)
plt.hist(x.shape, x)
plt.show()
D.
import numpy as np
import matplotlib.pyplot as plt
x = np.random.randn(1024)
plt.hist(x, x.shape)
plt.show()
right key : A
Knowledge point description : Add a title to the drawing .
Problem description : Add a Chinese title to the drawing , Please choose the correct answer from the following options :
A.
import numpy as np
import matplotlib.pyplot as plt
x = np.linspace(-4, 4, 10005)
y = 5 * (x + 4.2) * (x + 4.) * (x - 2.5)
plt.title(' curve ')
plt.plot(x, y, c = 'm')
plt.show()
B.
import numpy as np
import matplotlib.pyplot as plt
x = np.linspace(-4, 4, 10005)
y = 5 * (x + 4.2) * (x + 4.) * (x - 2.5)
plt.title(' curve ')
plt.plot(x, y, c = 'm')
plt.rcParams['font.sans-serif'] = ['SimSun']
plt.show()
C.
import numpy as np
import matplotlib.pyplot as plt
x = np.linspace(-4, 4, 10005)
y = 5 * (x + 4.2) * (x + 4.) * (x - 2.5)
plt.plot(x, y, c = 'm', title=' curve ')
plt.show()
D.
import numpy as np
import matplotlib.pyplot as plt
x = np.linspace(-4, 4, 10005)
y = 5 * (x + 4.2) * (x + 4.) * (x - 2.5)
plt.plot(x, y, c = 'm', title=' curve ')
plt.rcParams['font.sans-serif'] = ['SimSun']
plt.show()
right key : B
Knowledge point description : Add appropriate description labels for the coordinate axes of the drawing to help users understand the meaning of the drawing .
Problem description : A function is known to describe accelerated motion , Please draw a graph to show the relationship between time and distance :
A.
import numpy as np
import matplotlib.pyplot as plt
x = np.linspace(0, 8, 1000)
y = 2.0 * x + 0.5 * 5 * x ** 2
plt.xtitle('Time')
plt.ytitle('distance')
plt.plot(x, y, c = 'c')
plt.show()
B.
import numpy as np
import matplotlib.pyplot as plt
x = np.linspace(0, 8, 1000)
y = 2.0 * x + 0.5 * 5 * x ** 2
plt.plot(x, y, c = 'c', xlabel = 'Time', ylable = 'distance')
plt.show()
C.
import numpy as np
import matplotlib.pyplot as plt
x = np.linspace(0, 8, 1000)
y = 2.0 * x + 0.5 * 5 * x ** 2
plt.plot(x, y, c = 'c', xtitle = 'Time', ytitle = 'distance')
plt.show()
D.
import numpy as np
import matplotlib.pyplot as plt
x = np.linspace(0, 8, 1000)
y = 2.0 * x + 0.5 * 5 * x ** 2
plt.xlabel('Time')
plt.ylabel('distance')
plt.plot(x, y, c = 'c')
plt.show()
right key :D
Knowledge point description : Add description text to the drawing , Highlight the importance of points or lines in the diagram .
Problem description : Use text to explicitly mark the midpoint of the function image , Please choose the correct answer from the following options :
A.
import numpy as np
import matplotlib.pyplot as plt
x = np.linspace(0, 8, 1000)
y = 2.0 * x + 0.5 * 5 * x ** 2
x_mid = x[0]
y_mid = y[0]
plt.scatter(x_mid, y_mid)
plt.text(x_mid, y_mid, 'mid')
plt.plot(x, y, c = 'c')
plt.show()
B.
import numpy as np
import matplotlib.pyplot as plt
x = np.linspace(0, 8, 1000)
y = 2.0 * x + 0.5 * 5 * x ** 2
x_mid = (x[-1] - x[0]) / 2
y_mid = 2.0 * ((x[-1] - x[0]) / 2) + 0.5 * 5 * ((x[-1] - x[0]) / 2) ** 2
plt.scatter(x_mid, y_mid)
plt.text('mid')
plt.plot(x, y, c = 'c')
plt.show()
C.
import numpy as np
import matplotlib.pyplot as plt
x = np.linspace(0, 8, 1000)
y = 2.0 * x + 0.5 * 5 * x ** 2
x_mid = x[-1]
y_mid = y[-1]
plt.scatter(x_mid, y_mid)
plt.text(x_mid, y_mid, 'mid')
plt.plot(x, y, c = 'c')
plt.show()
D.
import numpy as np
import matplotlib.pyplot as plt
x = np.linspace(0, 8, 1000)
y = 2.0 * x + 0.5 * 5 * x ** 2
x_mid = (x[-1] - x[0]) / 2
y_mid = 2.0 * ((x[-1] - x[0]) / 2) + 0.5 * 5 * ((x[-1] - x[0]) / 2) ** 2
plt.scatter(x_mid, y_mid)
plt.text(x_mid, y_mid, 'mid')
plt.plot(x, y, c = 'c')
plt.show()
right key :D
Knowledge point description : Use arrows to indicate specific parts of the drawing .
Problem description : Use arrows to explicitly mark the midpoint of the function image , Please choose the correct answer from the following options :
A.
import numpy as np
import matplotlib.pyplot as plt
x = np.linspace(0, 8, 1000)
y = 2.0 * x + 0.5 * 5 * x ** 2
x_mid = (x[-1] - x[0]) / 2
y_mid = 2.0 * ((x[-1] - x[0]) / 2) + 0.5 * 5 * ((x[-1] - x[0]) / 2) ** 2
plt.annotate('mid',
ha = 'center', va = 'bottom',
xytext = (5, 30.),
xy = (x_mid, y_mid),
arrowprops = {
'facecolor' : 'black', 'shrink' : 0.05 })
plt.plot(x, y, c = 'c')
plt.show()
B.
import numpy as np
import matplotlib.pyplot as plt
x = np.linspace(0, 8, 1000)
y = 2.0 * x + 0.5 * 5 * x ** 2
x_mid = (x[-1] - x[0]) / 2
y_mid = 2.0 * ((x[-1] - x[0]) / 2) + 0.5 * 5 * ((x[-1] - x[0]) / 2) ** 2
plt.annotate('mid',
ha = 'center', va = 'bottom',
xytext = (5, 30.),
x = x_mid,
y = y_mid,
arrowprops = {
'facecolor' : 'black', 'shrink' : 0.05 })
plt.plot(x, y, c = 'c')
plt.show()
C.
import numpy as np
import matplotlib.pyplot as plt
x = np.linspace(0, 8, 1000)
y = 2.0 * x + 0.5 * 5 * x ** 2
x_mid = (x[-1] - x[0]) / 2
y_mid = 2.0 * ((x[-1] - x[0]) / 2) + 0.5 * 5 * ((x[-1] - x[0]) / 2) ** 2
plt.annotate('mid',
ha = 'center', va = 'bottom',
xtext = 5,
ytext = 30.,
xy = (x_mid, y_mid),
arrowprops = {
'facecolor' : 'black', 'shrink' : 0.05 })
plt.plot(x, y, c = 'c')
plt.show()
D.
import numpy as np
import matplotlib.pyplot as plt
x = np.linspace(0, 8, 1000)
y = 2.0 * x + 0.5 * 5 * x ** 2
x_mid = (x[-1] - x[0]) / 2
y_mid = 2.0 * ((x[-1] - x[0]) / 2) + 0.5 * 5 * ((x[-1] - x[0]) / 2) ** 2
plt.annotate('mid',
ha = 'center', va = 'bottom',
xtext = 5,
ytext = 30.,
xy = (x_mid, y_mid),
arrowprops = {
'facecolor' : 'black', 'shrink' : 0.05 })
plt.plot(x, y, c = 'c')
plt.show()
right key :A
Knowledge point description : Add corresponding legends for curves and points in the drawing , To make an accurate distinction .
Problem description : A graph contains multiple curves and scatter points , Add legends to them , Please choose the correct answer from the following options :
A.
import numpy as np
import matplotlib.pyplot as plt
x = np.linspace(0, 6, 1024)
data = np.random.standard_normal((150, 2))
y_1 = np.sin(x)
y_2 = np.cos(x)
plt.plot(x, y_1, c = 'm', lw = 3., text = 'sin(x)')
plt.plot(x, y_2, c = 'c', lw = 3., ls = '--', text = 'cos(x)')
plt.scatter(data[:,0], data[:, 1], c = 'y', text = 'random')
plt.legend()
plt.show()
B.
import numpy as np
import matplotlib.pyplot as plt
x = np.linspace(0, 6, 1024)
data = np.random.standard_normal((150, 2))
print(data.size)
y_1 = np.sin(x)
y_2 = np.cos(x)
plt.plot(x, y_1, c = 'm', lw = 3., title = 'sin(x)')
plt.plot(x, y_2, c = 'c', lw = 3., ls = '--', title = 'cos(x)')
plt.scatter(data[:,0], data[:,1], c = 'y', title = 'random')
plt.legend()
plt.show()
C.
import numpy as np
import matplotlib.pyplot as plt
x = np.linspace(0, 6, 1024)
data = np.random.standard_normal((150, 2))
y_1 = np.sin(x)
y_2 = np.cos(x)
plt.plot(x, y_1, c = 'm', lw = 3., label = 'sin(x)')
plt.plot(x, y_2, c = 'c', lw = 3., ls = '--', label = 'cos(x)')
plt.scatter(data[:, 0], data[:, 1], c = 'y', label = 'random')
plt.legend()
plt.show()
D.
import numpy as np
import matplotlib.pyplot as plt
x = np.linspace(0, 6, 1024)
data = np.random.standard_normal((150, 2))
y_1 = np.sin(x)
y_2 = np.cos(x)
plt.plot(x, y_1, c = 'm', lw = 3., legend = 'sin(x)')
plt.plot(x, y_2, c = 'c', lw = 3., ls = '--', legend = 'cos(x)')
plt.scatter(data[:, 0], data[:, 1], c = 'y', legend = 'random')
plt.legend()
plt.show()
right key :C