Python -- basic usage method and basic template of argparse module

PinkGranite 2021-11-25 13:28:40
python basic usage method basic

Recently, in the project of machine learning, I often encounter argparse modular , Here is a simple record and a brief introduction to the use of the module

1. argparse Module introduction

No matter what kind of computer project is, it will not be specially developed for just one person , Even a project belonging to a certain person cannot guarantee that the user's needs will not change . Of course , We can temporarily adjust the code to meet the requirements (“ Thought of the terrible Party A !!”), But it's too much trouble . meanwhile , To facilitate the dissemination of modules or applications , As developers, we need to enable non professionals to correctly 、 Easily use the functions it needs , and argparse Modules are born for this .( Add up , Personally think that argparse Modules also provide convenience for ourselves , In the process of using, we must sort out the implementation process and functions of the application .
From the perspective of human-computer interaction , A common way is to use “read” Way to read the user's requirements , Change the execution process of the application through judgment ; This method is relatively simple , But the inevitable problem is , Used for the huge randomness caused by user input , It makes it difficult for us to ensure the normal execution of the program . So can we design a way : It's like making a questionnaire , For ease of use , At the same time, ensure that the results meet the needs , We take the initiative to provide line selection , The user only needs to after the corresponding option “ tick ” that will do . Personally think that argparse That's my idea .

2. Basic usage process

Import module :

import argparse

Definition argparse object :

parser = argparse.ArgumentParser(description=" Add your comments on this “ questionnaire ” Description of , To act as a guide .")

add to “ Options ” And description :

parser.add_argument("--path", # Indicate the name of the topic here 
type=str, # Indicates the data type 
help="path to the training data", # Help information , Help users understand 
choices=["1", "2"], # Qualifying options , You can only select... From the specified values 
default=os.path.dirname(__file__)) # Set the default value , Title users with default values are not required 
parser.add_argument("--png", # This option is special “ switch ” Options , As long as the running program is marked --png , This means that the option is on , Corresponding action Will execute ,“store_true” It means saving as true.
help="if set, trains from raw KITTI png files (instead of jpgs)",

The user fills in :
Be careful : This step is not during program definition , It happens when the user calls the application

python --path /etc/tmp/??? -- The other options ...

collect “ questionnaire :”

options = parser.parse_args() # call .parse_args Methods complete the analysis of the questionnaire 
return options # Return results , The results are saved in the form of a dictionary 

3. Template code

from __future__ import absolute_import, division, print_function
import os
import argparse
class Options:
def __init__(self):
self.parser = argparse.ArgumentParser(description=" Description information ")
# Add options and descriptions 
help="path to the training data",
help="log directory",
default=os.path.join(os.path.expanduser("~"), "tmp"))
# The other options 
def parse(self):
self.options = self.parser.parse_args()
return self.options

  1. Utilisez Python pour proposer l'année de la colonne de date dans les deux CSV, faire une nouvelle colonne, puis combiner les deux tableaux CSV en un seul tableau avec la colonne de date et le numéro d'identification.
  2. 关于#python#的问题,请各位专家解答!
  3. ***
  4. ***
  5. 關於#python#的問題,請各比特專家解答!
  6. S'il vous plaît répondre aux questions de Python!
  7. About the import of Python class
  8. Magic Python property decorator: 1 line of code makes Python methods become properties in seconds
  9. Python 音频调整音量(附代码) | Python工具
  10. Python programming ideas [series of articles]
  11. Python crawler programming idea (67): modify nodes using pyquery
  12. Python crawler programming idea (66): using pyquery to obtain node information
  13. Python crawler programming idea (65): find nodes using pyquery
  14. Python crawler programming idea (64): using CSS selectors in pyquery
  15. Python crawler programming idea (63): basic knowledge of pyquery
  16. Python crawler programming idea (62): project practice: capturing cool dog online red song list
  17. Python crawler programming idea (61): project practice: capturing rental information
  18. Python crawler programming idea (60): get CSS selector code through browser
  19. Python爬虫编程思想(85):在Python中使用非关系型数据库
  20. Volume de réglage audio Python (avec Code) | outils Python
  21. Python crawler programming idea (59): get attribute value and text with beautiful soup CSS selector
  22. Python crawler programming idea (58): nested selection nodes with beautiful soup CSS selectors
  23. Python crawler programming idea (57): basic usage of CSS selector in beautiful soup
  24. Python crawler programming idea (56): find method of beautiful soup method selector
  25. Python crawler programming idea (55): find of beautiful soup method selector_ All method
  26. Python crawler programming idea (54): use beautiful soup to select sibling nodes
  27. Python crawler programming idea (53): use beautiful soup to select the parent node
  28. Django3.0 solves the problem of error reporting in reverse parsing
  29. Precautions for Python crawler
  30. Python 3 crawler series (1) -- climbing blind date websites
  31. Python到底是什么?为什么要学Python?
  32. #yyds干货盘点#Pandas数据清洗实用指南
  33. Python打包exe文件无法运行
  34. Two common ways to save files in Python
  35. #yyds幹貨盤點#Pandas數據清洗實用指南
  36. Yyds Dry Inventory pandas Data Cleaning Practical Guide
  37. PYTHON用LSTM长短期记忆神经网络的参数优化方法预测时间序列洗发水销售数据
  38. Python集成学习:自己编写构建AdaBoost分类模型可视化决策边界及sklearn包调用比较
  39. Python 3 makes a search software
  40. Python 3 simulated microblog login
  41. Using Python 3 to make practical software for drawing modification
  42. About HTML (acceptable to Python)
  43. Python集成學習:自己編寫構建AdaBoost分類模型可視化决策邊界及sklearn包調用比較
  44. PYTHON用LSTM長短期記憶神經網絡的參數優化方法預測時間序列洗發水銷售數據
  45. Python Integrated Learning: Writing and Constructing adaboost Classification Model Visualized decision Boundary and sklearn package Calling Comparison
  46. Python prédit les données de vente de shampooing de séries chronologiques en utilisant la méthode d'optimisation des paramètres du réseau neuronal de mémoire à court et à long terme lstm
  47. [zero basics of Python to introduction] a prerequisite for Python preparatory knowledge -- basic coding specification of Python
  48. OpenCV对比度亮度变换竟能用来去水印(附Python/C++源码)
  49. [zero basics of Python to getting started] a prerequisite for Python preparatory knowledge -- installing the visualization tool pycharm
  50. The test modifies in micro python
  51. Microphoton experimental circuit board based on mm32f3273 - does not work normally
  52. Run micropathon on mm32f3273 to test performance
  53. Design mm32f3277 micro Python experimental board with SD card
  54. Mm32f3277 corresponding interface files during microphoton migration
  55. Mm32f3277 microphoton experimental board design and software testing
  56. Making and testing mm32f3277 microphoton minimum circuit board
  57. Download mm32-link program automatically with Python simulated mouse
  58. A curriculum of "artificial intelligence Python machine learning and deep learning"
  59. Test the basic functions of mm32 microphoton test circuit board
  60. Test the basic functions of the mm32f3277 micro Python development board flying one by one